8 resultados para projection onto convex sets

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This work was supported by the CNR while the author was visiting the University of Milan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated to the memory of our colleague Vasil Popov January 14, 1942 – May 31, 1990 * Partially supported by ISF-Center of Excellence, and by The Hermann Minkowski Center for Geometry at Tel Aviv University, Israel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theodore Motzkin proved, in 1936, that any polyhedral convex set can be expressed as the (Minkowski) sum of a polytope and a polyhedral convex cone. We have provided several characterizations of the larger class of closed convex sets, Motzkin decomposable, in finite dimensional Euclidean spaces which are the sum of a compact convex set with a closed convex cone. These characterizations involve different types of representations of closed convex sets as the support functions, dual cones and linear systems whose relationships are also analyzed. The obtaining of information about a given closed convex set F and the parametric linear optimization problem with feasible set F from each of its different representations, including the Motzkin decomposition, is also discussed. Another result establishes that a closed convex set is Motzkin decomposable if and only if the set of extreme points of its intersection with the linear subspace orthogonal to its lineality is bounded. We characterize the class of the extended functions whose epigraphs are Motzkin decomposable sets showing, in particular, that these functions attain their global minima when they are bounded from below. Calculus of Motzkin decomposable sets and functions is provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the question whether the assumption of convexity of the set involved in Clarke-Ledyaev inequality can be relaxed. In the case when the point is outside the convex hull of the set we show that Clarke-Ledyaev type inequality holds if and only if there is certain geometrical relation between the point and the set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Здравко Д. Славов - В тази работа се разглеждат Паретовските решения в непрекъсната многокритериална оптимизация. Обсъжда се ролята на някои предположения, които влияят на характеристиките на Паретовските множества. Авторът се е опитал да премахне предположенията за вдлъбнатост на целевите функции и изпъкналост на допустимата област, които обикновено се използват в многокритериалната оптимизация. Резултатите са на базата на конструирането на ретракция от допустимата област върху Парето-оптималното множество.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 52A10.