11 resultados para parallel algorithm
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In the field of Transition P systems implementation, it has been determined that it is very important to determine in advance how long takes evolution rules application in membranes. Moreover, to have time estimations of rules application in membranes makes possible to take important decisions related to hardware / software architectures design. The work presented here introduces an algorithm for applying active evolution rules in Transition P systems, which is based on active rules elimination. The algorithm complies the requisites of being nondeterministic, massively parallel, and what is more important, it is time delimited because it is only dependant on the number of membrane evolution rules.
Resumo:
Димитър С. Илиев, Станимир Д. Илиев - Актуално е изследването на поведението на течен менискус в околността на хетерогенна стена. До сега няма получено числено решение за формата на менискуса около стена, която е с хаотична хетерогенност. В настоящата статия е разработен алгоритъм за метода на локалните вариации, който може да се използва на многопроцесорни системи. С този метод е получен за първи път профила на равновесен течен менискус около вертикална стена с хаотична хетерогенност.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
2000 Mathematics Subject Classification: 90C25, 68W10, 49M37.
Resumo:
MSC subject classification: 65C05, 65U05.
Resumo:
Data processing services for Meteosat geostationary satellite are presented. Implemented services correspond to the different levels of remote-sensing data processing, including noise reduction at preprocessing level, cloud mask extraction at low-level and fractal dimension estimation at high-level. Cloud mask obtained as a result of Markovian segmentation of infrared data. To overcome high computation complexity of Markovian segmentation parallel algorithm is developed. Fractal dimension of Meteosat data estimated using fractional Brownian motion models.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.
Resumo:
False friends are pairs of words in two languages that are perceived as similar but have different meanings. We present an improved algorithm for acquiring false friends from sentence-level aligned parallel corpus based on statistical observations of words occurrences and co-occurrences in the parallel sentences. The results are compared with an entirely semantic measure for cross-lingual similarity between words based on using the Web as a corpus through analyzing the words’ local contexts extracted from the text snippets returned by searching in Google. The statistical and semantic measures are further combined into an improved algorithm for identification of false friends that achieves almost twice better results than previously known algorithms. The evaluation is performed for identifying cognates between Bulgarian and Russian but the proposed methods could be adopted for other language pairs for which parallel corpora and bilingual glossaries are available.
Resumo:
P systems or Membrane Computing are a type of a distributed, massively parallel and non deterministic system based on biological membranes. They are inspired in the way cells process chemical compounds, energy and information. These systems perform a computation through transition between two consecutive configurations. As it is well known in membrane computing, a configuration consists in a m-tuple of multisets present at any moment in the existing m regions of the system at that moment time. Transitions between two configurations are performed by using evolution rules which are in each region of the system in a non-deterministic maximally parallel manner. This work is part of an exhaustive investigation line. The final objective is to implement a HW system that evolves as it makes a transition P-system. To achieve this objective, it has been carried out a division of this generic system in several stages, each of them with concrete matters. In this paper the stage is developed by obtaining the part of the system that is in charge of the application of the active rules. To count the number of times that the active rules is applied exist different algorithms. Here, it is presents an algorithm with improved aspects: the number of necessary iterations to reach the final values is smaller than the case of applying step to step each rule. Hence, the whole process requires a minor number of steps and, therefore, the end of the process will be reached in a shorter length of time.
Resumo:
The parallel resolution procedures based on graph structures method are presented. OR-, AND- and DCDP- parallel inference on connection graph representation is explored and modifications to these algorithms using heuristic estimation are proposed. The principles for designing these heuristic functions are thoroughly discussed. The colored clause graphs resolution principle is presented. The comparison of efficiency (on the Steamroller problem) is carried out and the results are presented. The parallel unification algorithm used in the parallel inference procedure is briefly outlined in the final part of the paper.