29 resultados para linear and nonlinear differential and integral equations
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Mathematics Subject Classification: 44A05, 44A35
Resumo:
Some oscillation criteria for solutions of a general perturbed second order ordinary differential equation with damping (r(t)x′ (t))′ + h(t)f (x)x′ (t) + ψ(t, x) = H(t, x(t), x′ (t)) with alternating coefficients are given. The results obtained improve and extend some existing results in the literature.
Resumo:
Some new nonlinear integral inequalities that involve the maximum of the unknown scalar function of one variable are solved. The considered inequalities are generalizations of the classical nonlinear integral inequality of Bihari. The importance of these integral inequalities is defined by their wide applications in qualitative investigations of differential equations with "maxima" and it is illustrated by some direct applications.
Resumo:
2000 Mathematics Subject Classification: 45F15, 45G10, 46B38.
Resumo:
2000 Mathematics Subject Classification: 34C10, 34C15.
Resumo:
2000 Mathematics Subject Classification: 34C10, 34C15.
Resumo:
MSC 2010: 26A33 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary
Resumo:
An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.
Resumo:
2000 Mathematics Subject Classification: 45G15, 26A33, 32A55, 46E15.
Resumo:
2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30
Resumo:
Sufficient conditions for the existence of Lp(k)-solutions of linear nonhomogeneous impulsive differential equations with unbounded linear operator are found. An example of the theory of the linear nonhomogeneous partial impulsive differential equations of parabolic type is given.
Resumo:
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.
Resumo:
We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.
Resumo:
In this paper are examined some classes of linear and non-linear analytical systems of partial differential equations. Compatibility conditions are found and if they are satisfied, the solutions are given as functional series in a neighborhood of a given point (x = 0).
Resumo:
Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10