8 resultados para inverse problem
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
MSC 2010: 26A33, 33E12, 34K29, 34L15, 35K57, 35R30
Resumo:
This paper describes a method of signal preprocessing under active monitoring. Suppose we want to solve the inverse problem of getting the response of a medium to one powerful signal, which is equivalent to obtaining the transmission function of the medium, but do not have an opportunity to conduct such an experiment (it might be too expensive or harmful for the environment). Practically the problem can be reduced to obtaining the transmission function of the medium. In this case we can conduct a series of experiments of relatively low power and superpose the response signals. However, this method is conjugated with considerable loss of information (especially in the high frequency domain) due to fluctuations of the phase, the frequency and the starting time of each individual experiment. The preprocessing technique presented in this paper allows us to substantially restore the response of the medium and consequently to find a better estimate for the transmission function. This technique is based on expanding the initial signal into the system of orthogonal functions.
Resumo:
A method for measurement and visualization of the complex transmission coefficient of 2-D micro- objects is proposed. The method is based on calculation of the transmission coefficient from the diffraction pattern and the illumination aperture function for monochromatic light. A phase-stepping method was used for diffracted light phase determination.
Resumo:
2000 Mathematics Subject Classification: 12F12, 15A66.
Resumo:
The evaluation from experimental data, of physical quantities, which enter into the electromagnetic Maxwell equations, is described as inverse optical problem. The functional relations between the dependent and independent variables are of transcendental character and numeric procedures for evaluation of the unknowns are largely used. Herein, we discuss a direct approach to the solution, illustrated by a specific example of determination of thin films optical constants from spectrophotometric data. New algorithm is proposed for the parameters evaluation, which does not need an initial guess of the unknowns and does not use iterative procedures. Thus we overcome the intrinsic deficiency of minimization techniques, such as gradient search methods, Simplex methods, etc. The price of it is a need of more computing power, but our algorithm is easily implemented in structures such as grid clusters. We show the advantages of this approach and its potential for generalization to other inverse optical problems.
Resumo:
Иван Димовски, Юлиан Цанков - В статията е намерено точно решение на задачата на Бицадзе-Самрски (1) за уравнението на Лаплас, като е използвано операционно смятане основано на некласическа двумернa конволюция. На това точно решение може да се гледа като начин за сумиране на нехармоничния ред по синуси на решението, получен по метода на Фурие.
Resumo:
MSC 2010: 35J05, 33C10, 45D05
Resumo:
2000 Mathematics Subject Classification: 62E16,62F15, 62H12, 62M20.