2 resultados para interspecific association and correlation
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (16)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (15)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (30)
- Boston University Digital Common (2)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (9)
- CentAUR: Central Archive University of Reading - UK (32)
- Center for Jewish History Digital Collections (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (50)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (15)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (10)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (10)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (42)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (22)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (43)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (46)
- Queensland University of Technology - ePrints Archive (111)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional dos Hospitais da Universidade Coimbra (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (99)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo España (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (21)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (17)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal (1)
- Université de Montréal, Canada (22)
- University of Connecticut - USA (1)
- University of Michigan (68)
- University of Queensland eSpace - Australia (11)
- University of Washington (4)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
The real purpose of collecting big data is to identify causality in the hope that this will facilitate credible predictivity . But the search for causality can trap one into infinite regress, and thus one takes refuge in seeking associations between variables in data sets. Regrettably, the mere knowledge of associations does not enable predictivity. Associations need to be embedded within the framework of probability calculus to make coherent predictions. This is so because associations are a feature of probability models, and hence they do not exist outside the framework of a model. Measures of association, like correlation, regression, and mutual information merely refute a preconceived model. Estimated measures of associations do not lead to a probability model; a model is the product of pure thought. This paper discusses these and other fundamentals that are germane to seeking associations in particular, and machine learning in general. ACM Computing Classification System (1998): H.1.2, H.2.4., G.3.