19 resultados para incremental learning algorithm
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this paper an outliers resistant learning algorithm for the radial-basis-fuzzy-wavelet-neural network based on R. Welsh criterion is proposed. Suggested learning algorithm under consideration allows the signals processing in presence of significant noise level and outliers. The robust learning algorithm efficiency is investigated and confirmed by the number of experiments including medical applications.
Resumo:
In the paper learning algorithm for adjusting weight coefficients of the Cascade Neo-Fuzzy Neural Network (CNFNN) in sequential mode is introduced. Concerned architecture has the similar structure with the Cascade-Correlation Learning Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of artificial neurons. CNFNN consists of neo-fuzzy neurons, which can be adjusted using high-speed linear learning procedures. Proposed CNFNN is characterized by high learning rate, low size of learning sample and its operations can be described by fuzzy linguistic “if-then” rules providing “transparency” of received results, as compared with conventional neural networks. Using of online learning algorithm allows to process input data sequentially in real time mode.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
An approach is proposed for inferring implicative logical rules from examples. The concept of a good diagnostic test for a given set of positive examples lies in the basis of this approach. The process of inferring good diagnostic tests is considered as a process of inductive common sense reasoning. The incremental approach to learning algorithms is implemented in an algorithm DIAGaRa for inferring implicative rules from examples.
Resumo:
* This research was partially supported by the Latvian Science Foundation under grant No.02-86d.
Resumo:
Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.
Resumo:
This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space (p) is much larger than the number of observations (n). Specifically, we evaluate massive gene expression microarray cancer data where the ratio κ is less than one. We explore the statistical and computational challenges inherent in these high dimensional low sample size (HDLSS) problems and present statistical machine learning methods used to tackle and circumvent these difficulties. Regularization and kernel algorithms were explored in this research using seven datasets where κ < 1. These techniques require special attention to tuning necessitating several extensions of cross-validation to be investigated to support better predictive performance. While no single algorithm was universally the best predictor, the regularization technique produced lower test errors in five of the seven datasets studied.
Resumo:
General Regression Neuro-Fuzzy Network, which combines the properties of conventional General Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm.
Resumo:
This paper addresses the task of learning classifiers from streams of labelled data. In this case we can face the problem that the underlying concepts can change over time. The paper studies two mechanisms developed for dealing with changing concepts. Both are based on the time window idea. The first one forgets gradually, by assigning to the examples weight that gradually decreases over time. The second one uses a statistical test to detect changes in concept and then optimizes the size of the time window, aiming to maximise the classification accuracy on the new examples. Both methods are general in nature and can be used with any learning algorithm. The objectives of the conducted experiments were to compare the mechanisms and explore whether they can be combined to achieve a synergetic e ect. Results from experiments with three basic learning algorithms (kNN, ID3 and NBC) using four datasets are reported and discussed.
Resumo:
In this paper a new double-wavelet neuron architecture obtained by modification of standard wavelet neuron, and its learning algorithm are proposed. The offered architecture allows to improve the approximation properties of wavelet neuron. Double-wavelet neuron and its learning algorithm are examined for forecasting non-stationary chaotic time series.
Resumo:
2000 Mathematics Subject Classification: 62P99, 68T50
Resumo:
An eMathTeacher [Sánchez-Torrubia 2007a] is an eLearning on line self assessment tool that help students to active learning math algorithms by themselves, correcting their mistakes and providing them with clues to find the right solution. The tool presented in this paper is an example of this new concept on Computer Aided Instruction (CAI) resources and has been implemented as a Java applet and designed as an auxiliary instrument for both classroom teaching and individual practicing of Fleury’s algorithm. This tool, included within a set of eMathTeacher tools, has been designed as educational complement of Graph Algorithm active learning for first course students. Its characteristics of visualization, simplicity and interactivity, make this tutorial a great value pedagogical instrument.
Resumo:
E-learning is supposing an innovation in teaching, raising from the development of new technologies. It is based in a set of educational resources, including, among others, multimedia or interactive contents accessible through Internet or Intranet networks. A whole spectrum of tools and services support e-learning, some of them include auto-evaluation and automated correction of test-like exercises, however, this sort of exercises are very constrained because of its nature: fixed contents and correct answers suppose a limit in the way teachers may evaluation students. In this paper we propose a new engine that allows validating complex exercises in the area of Data Structures and Algorithms. Correct solutions to exercises do not rely only in how good the execution of the code is, or if the results are same as expected. A set of criteria on algorithm complexity or correctness in the use of the data structures are required. The engine presented in this work covers a wide set of exercises with these characteristics allowing teachers to establish the set of requirements for a solution, and students to obtain a measure on the quality of their solution in the same terms that are later required for exams.
Resumo:
The controlled from distance teaching (DT) in the system of technical education has a row of features: complication of informative content, necessity of development of simulation models and trainers for conducting of practical and laboratory employments, conducting of knowledge diagnostics on the basis of mathematical-based algorithms, organization of execution collective projects of the applied setting. For development of the process of teaching bases of fundamental discipline control system Theory of automatic control (TAC) the combined approach of optimum combination of existent programmatic instruments of support was chosen DT and own developments. The system DT TAC included: controlled from distance course (DC) of TAC, site of virtual laboratory practical works in LAB.TAC and students knowledge remote diagnostic system d-tester.
Resumo:
We propose the adaptive algorithm for solving a set of similar scheduling problems using learning technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in performance measure) and efficient (in computational time) heuristics by adapting local decisions for the scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern recognition apparatus.