10 resultados para first order transition system
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Part of network management is collecting information about the activities that go on around a distributed system and analyzing it in real time, at a deferred moment, or both. The reason such information may be stored in log files and analyzed later is to data-mine it so that interesting, unusual, or abnormal patterns can be discovered. In this paper we propose defining patterns in network activity logs using a dialect of First Order Temporal Logics (FOTL), called First Order Temporal Logic with Duration Constrains (FOTLDC). This logic is powerful enough to describe most network activity patterns because it can handle both causal and temporal correlations. Existing results for data-mining patterns with similar structure give us the confidence that discovering DFOTL patterns in network activity logs can be done efficiently.
Resumo:
First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative.
Resumo:
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
Resumo:
2000 Mathematics Subject Classification: 34K15.
Resumo:
2000 Mathematics Subject Classification: 90C46, 90C26, 26B25, 49J52.
Resumo:
2002 Mathematics Subject Classification: 35L40
Resumo:
We present some results on the formation of singularities for C^1 - solutions of the quasi-linear N × N strictly hyperbolic system Ut + A(U )Ux = 0 in [0, +∞) × Rx . Under certain weak non-linearity conditions (weaker than genuine non-linearity), we prove that the first order derivative of the solution blows-up in finite time.
Resumo:
Nonmonotonic Logics such as Autoepistemic Logic, Reflective Logic, and Default Logic, are usually defined in terms of set-theoretic fixed-point equations defined over deductively closed sets of sentences of First Order Logic. Such systems may also be represented as necessary equivalences in a Modal Logic stronger than S5 with the added advantage that such representations may be generalized to allow quantified variables crossing modal scopes resulting in a Quantified Autoepistemic Logic, a Quantified Autoepistemic Kernel, a Quantified Reflective Logic, and a Quantified Default Logic. Quantifiers in all these generalizations obey all the normal laws of logic including both the Barcan formula and its converse. Herein, we address the problem of solving some necessary equivalences containing universal quantifiers over modal scopes. Solutions obtained by these methods are then compared to related results obtained in the literature by Circumscription in Second Order Logic since the disjunction of all the solutions of a necessary equivalence containing just normal defaults in these Quantified Logics, is equivalent to that system.
Resumo:
AMS subject classification: Primary 34A60, Secondary 49K24.
Resumo:
2000 Mathematics Subject Classification: 62G32, 62G20.