11 resultados para finite abelian p-group
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Let a commutative ring R be a direct product of indecomposable rings with identity and let G be a finite abelian p-group. In the present paper we give a complete system of invariants of the group algebra RG of G over R when p is an invertible element in R. These investigations extend some classical results of Berman (1953 and 1958), Sehgal (1970) and Karpilovsky (1984) as well as a result of Mollov (1986).
Resumo:
2000 Mathematics Subject Classification: Primary 20C07, 20K10, 20K20, 20K21; Secondary 16U60, 16S34.
Resumo:
∗ The work was supported by the National Fund “Scientific researches” and by the Ministry of Education and Science in Bulgaria under contract MM 70/91.
Resumo:
2000 Mathematics Subject Classification: 11S31 12E15 12F10 12J20.
Resumo:
2000 Mathematics Subject Classification: 20D60,20E15.
Resumo:
2000 Mathematics Subject Classification: 12F12, 15A66.
Resumo:
Валентин В. Илиев - Авторът изучава някои хомоморфни образи G на групата на Артин на плитките върху n нишки в крайни симетрични групи. Получените пермутационни групи G са разширения на симетричната група върху n букви чрез подходяща абелева група. Разширенията G зависят от един целочислен параметър q ≥ 1 и се разцепват тогава и само тогава, когато 4 не дели q. В случая на нечетно q са намерени всички крайномерни неприводими представяния на G, а те от своя страна генерират безкрайна редица от неприводими представяния на групата на плитките.
Resumo:
2010 Mathematics Subject Classification: 14L99, 14R10, 20B27.
Resumo:
An embedding X ⊂ G of a topological space X into a topological group G is called functorial if every homeomorphism of X extends to a continuous group homomorphism of G. It is shown that the interval [0, 1] admits no functorial embedding into a finite-dimensional or metrizable topological group.
Resumo:
The theorem of Czerniakiewicz and Makar-Limanov, that all the automorphisms of a free algebra of rank two are tame is proved here by showing that the group of these automorphisms is the free product of two groups (amalgamating their intersection), the group of all affine automorphisms and the group of all triangular automorphisms. The method consists in finding a bipolar structure. As a consequence every finite subgroup of automorphisms (in characteristic zero) is shown to be conjugate to a group of linear automorphisms.
Multipliers on Spaces of Functions on a Locally Compact Abelian Group with Values in a Hilbert Space
Resumo:
2000 Mathematics Subject Classification: Primary 43A22, 43A25.