The Interval [0,1] Admits no Functorial Embedding into a Finite-Dimensional or Metrizable Topological Group


Autoria(s): Banakh, Taras; Zarichnyi, Michael
Data(s)

26/10/2009

26/10/2009

2000

Resumo

An embedding X ⊂ G of a topological space X into a topological group G is called functorial if every homeomorphism of X extends to a continuous group homomorphism of G. It is shown that the interval [0, 1] admits no functorial embedding into a finite-dimensional or metrizable topological group.

Identificador

Serdica Mathematical Journal, Vol. 26, No 1, (2000), 1p-4p

1310-6600

http://hdl.handle.net/10525/402

Idioma(s)

en

Publicador

Institute of Mathematics and Informatics

Palavras-Chave #Topological Group #Functorial Embedding
Tipo

Article