22 resultados para ensembles of artificial neural networks
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.
Resumo:
An important task for a direct mailing company is to detect potential customers in order to avoid unnecessary and unwanted mailing. This paper describes a non-linear method to predict profiles of potential customers using dARTMAP, ARTMAP-IC, and Fuzzy ARTMAP neural networks. The paper discusses advantages of the proposed approaches over similar techniques based on MLP neural networks.
Resumo:
questions of forming of learning sets for artificial neural networks in problems of lossless data compression are considered. Methods of construction and use of learning sets are studied. The way of forming of learning set during training an artificial neural network on the data stream is offered.
Resumo:
In the world, scientific studies increase day by day and computer programs facilitate the human’s life. Scientists examine the human’s brain’s neural structure and they try to be model in the computer and they give the name of artificial neural network. For this reason, they think to develop more complex problem’s solution. The purpose of this study is to estimate fuel economy of an automobile engine by using artificial neural network (ANN) algorithm. Engine characteristics were simulated by using “Neuro Solution” software. The same data is used in MATLAB to compare the performance of MATLAB is such a problem and show its validity. The cylinder, displacement, power, weight, acceleration and vehicle production year are used as input data and miles per gallon (MPG) are used as target data. An Artificial Neural Network model was developed and 70% of data were used as training data, 15% of data were used as testing data and 15% of data is used as validation data. In creating our model, proper neuron number is carefully selected to increase the speed of the network. Since the problem has a nonlinear structure, multi layer are used in our model.
Resumo:
Grape juice composition during the different stages of berry growth was compared. The analytical data collected were used to investigate the relationships between some of the different components studied in these berries during the ripening period. Our goal is to study, with neural networks, the impact of water availability on Vitis vinifera L. cv. Tempranillo grape yields and juice composition over a three-year period.
Resumo:
We suppose the neural networks for solution the problem of the diagnostic in Homeopath System and consider the algorithms of the training.
Resumo:
This paper proposes a new method using radial basis neural networks in order to find the classification and the recognition of trees species for forest inventories. This method computes the wood volume using a set of data easily obtained. The results that are obtained improve the used classic and statistical models.
Resumo:
In the paper, an ontogenic artificial neural network (ANNs) is proposed. The network uses orthogonal activation functions that allow significant reducing of computational complexity. Another advantage is numerical stability, because the system of activation functions is linearly independent by definition. A learning procedure for proposed ANN with guaranteed convergence to the global minimum of error function in the parameter space is developed. An algorithm for structure network structure adaptation is proposed. The algorithm allows adding or deleting a node in real-time without retraining of the network. Simulation results confirm the efficiency of the proposed approach.
Resumo:
It is consider the new global models for society of neuronet type. The hierarchical structure of society and mentality of individual are considered. The way for incorporating in model anticipatory (prognostic) ability of individual is considered. Some implementations of approach for real task and further research problems are described. Multivaluedness of models and solutions is discussed. Sensory-motor systems analogy also is discussed. New problems for theory and applications of neural networks are described.
Resumo:
System compositional approach to model construction and research of informational processes, which take place in biological hierarchical neural networks, is being discussed. A computer toolbox has been successfully developed for solution of tasks from this scientific sphere. A series of computational experiments investigating the work of this toolbox on olfactory bulb model has been carried out. The well-known psychophysical phenomena have been reproduced in experiments.
Resumo:
Representation of neural networks by dynamical systems is considered. The method of training of neural networks with the help of the theory of optimal control is offered.
Resumo:
One of the problems in AI tasks solving by neurocomputing methods is a considerable training time. This problem especially appears when it is needed to reach high quality in forecast reliability or pattern recognition. Some formalised ways for increasing of networks’ training speed without loosing of precision are proposed here. The offered approaches are based on the Sufficiency Principle, which is formal representation of the aim of a concrete task and conditions (limitations) of their solving [1]. This is development of the concept that includes the formal aims’ description to the context of such AI tasks as classification, pattern recognition, estimation etc.
Resumo:
In this study, we showed various approachs implemented in Artificial Neural Networks for network resources management and Internet congestion control. Through a training process, Neural Networks can determine nonlinear relationships in a data set by associating the corresponding outputs to input patterns. Therefore, the application of these networks to Traffic Engineering can help achieve its general objective: “intelligent” agents or systems capable of adapting dataflow according to available resources. In this article, we analyze the opportunity and feasibility to apply Artificial Neural Networks to a number of tasks related to Traffic Engineering. In previous sections, we present the basics of each one of these disciplines, which are associated to Artificial Intelligence and Computer Networks respectively.
Resumo:
The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.
Resumo:
The paper is devoted to the description of hybrid pattern recognition method developed by research groups from Russia, Armenia and Spain. The method is based upon logical correction over the set of conventional neural networks. Output matrices of neural networks are processed according to the potentiality principle which allows increasing of recognition reliability.