5 resultados para computer-assisted
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
We discuss some main points of computer-assisted proofs based on reliable numerical computations. Such so-called self-validating numerical methods in combination with exact symbolic manipulations result in very powerful mathematical software tools. These tools allow proving mathematical statements (existence of a fixed point, of a solution of an ODE, of a zero of a continuous function, of a global minimum within a given range, etc.) using a digital computer. To validate the assertions of the underlying theorems fast finite precision arithmetic is used. The results are absolutely rigorous. To demonstrate the power of reliable symbolic-numeric computations we investigate in some details the verification of very long periodic orbits of chaotic dynamical systems. The verification is done directly in Maple, e.g. using the Maple Power Tool intpakX or, more efficiently, using the C++ class library C-XSC.
Resumo:
An approach to a specialized website creation – club of distance courses authors – on the basis of Virtual Learning Space “Web-Class KhPI” is implemented and suggested in the article.
Resumo:
In this work, we determine the coset weight spectra of all binary cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary linear codes of lengths up to 33 which are distance-optimal, by using some of the algebraic properties of the codes and a computer assisted search. Having these weight spectra the monotony of the function of the undetected error probability after t-error correction P(t)ue (C,p) could be checked with any precision for a linear time. We have used a programm written in Maple to check the monotony of P(t)ue (C,p) for the investigated codes for a finite set of points of p € [0, p/(q-1)] and in this way to determine which of them are not proper.
Resumo:
В статье рассматривается сценарный подход для определения количественной оценки эргономичности интерфейса обучающих систем. Описаны метод декомпозиции и метод сценарной композиции.
Resumo:
ACM Computing Classification System (1998): G.1.1, G.1.2.