10 resultados para cognitive diagnostic model
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
Summarizing the accumulated experience for a long time in the polyparametric cognitive modeling of different physiological processes (electrocardiogram, electroencephalogram, electroreovasogram and others) and the development on this basis some diagnostics methods give ground for formulating a new methodology of the system analysis in biology. The gist of the methodology consists of parametrization of fractals of electrophysiological processes, matrix description of functional state of an object with a unified set of parameters, construction of the polyparametric cognitive geometric model with artificial intelligence algorithms. The geometry model enables to display the parameter relationships are adequate to requirements of the system approach. The objective character of the elements of the models and high degree of formalization which facilitate the use of the mathematical methods are advantages of these models. At the same time the geometric images are easily interpreted in physiological and clinical terms. The polyparametric modeling is an object oriented tool possessed advances functional facilities and some principal features.
Resumo:
A model of the cognitive process of natural language processing has been developed using the formalism of generalized nets. Following this stage-simulating model, the treatment of information inevitably includes phases, which require joint operations in two knowledge spaces – language and semantics. In order to examine and formalize the relations between the language and the semantic levels of treatment, the language is presented as an information system, conceived on the bases of human cognitive resources, semantic primitives, semantic operators and language rules and data. This approach is applied for modeling a specific grammatical rule – the secondary predication in Russian. Grammatical rules of the language space are expressed as operators in the semantic space. Examples from the linguistics domain are treated and several conclusions for the semantics of the modeled rule are made. The results of applying the information system approach to the language turn up to be consistent with the stages of treatment modeled with the generalized net.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
2010 Mathematics Subject Classification: 62P15.
Resumo:
The basic methods of decisions making in multi-criterion conditions are considered, from which the method of the weighed total for calculation of diagnostic indexes significance in differential diagnostics of dermatological diseases is chosen.
Resumo:
This article describes the approach adopted and the results obtained by the international team developing WBLST (Web Based Learning in Sciences and Technologies) a Web-based application for e-learning, developed for the students of “UVPL: Université Virtuelle des Pays de la Loire”. The developed e-learning system covers three levels of learning activities - content, exercises, and laboratory. The delivery model is designed to operate with domain concepts as relevant providers of semantic links. The aim is to facilitate the overview and to help the establishment of a mental map of the learning material. The implemented system is strongly based on the organization of the instruction in virtual classes. The obtained quality of the system is evaluated on the bases of feedback form students and professors.
Resumo:
The paper describes an extension of the cognitive architecture DUAL with a model of visual attention and perception. The goal of this attempt is to account for the construction and the categorization of object and scene representations derived from visual stimuli in the TextWorld microdomain. Low-level parallel computations are combined with an active serial deployment of visual attention enabling the construction of abstract symbolic representations. A limited-capacity short-term visual store holding information across attention shifts forms the core of the model interfacing between the low-level representation of the stimulus and DUAL’s semantic memory. The model is validated by comparing the results of a simulation with real data from an eye movement experiment with human subjects.
Resumo:
Neural Networks have been successfully employed in different biomedical settings. They have been useful for feature extractions from images and biomedical data in a variety of diagnostic applications. In this paper, they are applied as a diagnostic tool for classifying different levels of gastric electrical uncoupling in controlled acute experiments on dogs. Data was collected from 16 dogs using six bipolar electrodes inserted into the serosa of the antral wall. Each dog underwent three recordings under different conditions: (1) basal state, (2) mild surgically-induced uncoupling, and (3) severe surgically-induced uncoupling. For each condition half-hour recordings were made. The neural network was implemented according to the Learning Vector Quantization model. This is a supervised learning model of the Kohonen Self-Organizing Maps. Majority of the recordings collected from the dogs were used for network training. Remaining recordings served as a testing tool to examine the validity of the training procedure. Approximately 90% of the dogs from the neural network training set were classified properly. However, only 31% of the dogs not included in the training process were accurately diagnosed. The poor neural-network based diagnosis of recordings that did not participate in the training process might have been caused by inappropriate representation of input data. Previous research has suggested characterizing signals according to certain features of the recorded data. This method, if employed, would reduce the noise and possibly improve the diagnostic abilities of the neural network.
Resumo:
Every year production volume of castings grows, especially grows production volume of non-ferrous metals, thanks to aluminium. As a result, requirements to castings quality also increase. Foundry men from all over the world put all their efforts to manage the problem of casting defects. In this article the authors present an approach based on the use of cognitive models that help to visualize inner cause-and-effect relations leading to casting defects in the foundry process. The cognitive models mentioned comprise a diverse network of factors and their relations, which together thoroughly describe all the details of the foundry process and their influence on the appearance of castings’ defects and other aspects.. Moreover, the article contains an example of a simple die casting model and results of simulation. Implementation of the proposed method will help foundry men reveal the mechanism and the main reasons of casting defects formation.