18 resultados para classification algorithm
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this paper, we present one approach for extending the learning set of a classification algorithm with additional metadata. It is used as a base for giving appropriate names to found regularities. The analysis of correspondence between connections established in the attribute space and existing links between concepts can be used as a test for creation of an adequate model of the observed world. Meta-PGN classifier is suggested as a possible tool for establishing these connections. Applying this approach in the field of content-based image retrieval of art paintings provides a tool for extracting specific feature combinations, which represent different sides of artists' styles, periods and movements.
Resumo:
* This study was supported in part by the Natural Sciences and Engineering Research Council of Canada, and by the Gastrointestinal Motility Laboratory (University of Alberta Hospitals) in Edmonton, Alberta, Canada.
Resumo:
Gastroesophageal reflux disease (GERD) is a common cause of chronic cough. For the diagnosis and treatment of GERD, it is desirable to quantify the temporal correlation between cough and reflux events. Cough episodes can be identified on esophageal manometric recordings as short-duration, rapid pressure rises. The present study aims at facilitating the detection of coughs by proposing an algorithm for the classification of cough events using manometric recordings. The algorithm detects cough episodes based on digital filtering, slope and amplitude analysis, and duration of the event. The algorithm has been tested on in vivo data acquired using a single-channel intra-esophageal manometric probe that comprises a miniature white-light interferometric fiber optic pressure sensor. Experimental results demonstrate the feasibility of using the proposed algorithm for identifying cough episodes based on real-time recordings using a single channel pressure catheter. The presented work can be integrated with commercial reflux pH/impedance probes to facilitate simultaneous 24-hour ambulatory monitoring of cough and reflux events, with the ultimate goal of quantifying the temporal correlation between the two types of events.
Resumo:
A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.
Resumo:
2000 Mathematics Subject Classification: 90C25, 68W10, 49M37.
Resumo:
2000 Mathematics Subject Classification: 91B28, 65C05.
Resumo:
ACM Computing Classification System (1998): I.2.8, I.2.10, I.5.1, J.2.
Resumo:
Димитър С. Илиев, Станимир Д. Илиев - Актуално е изследването на поведението на течен менискус в околността на хетерогенна стена. До сега няма получено числено решение за формата на менискуса около стена, която е с хаотична хетерогенност. В настоящата статия е разработен алгоритъм за метода на локалните вариации, който може да се използва на многопроцесорни системи. С този метод е получен за първи път профила на равновесен течен менискус около вертикална стена с хаотична хетерогенност.
Resumo:
ACM Computing Classification System (1998): G.2.2.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
AMS subject classification: 90B80.
Resumo:
2000 Mathematics Subject Classification: 91E45.
Resumo:
ACM Computing Classification System (1998): G.2.2, F.2.2.
Resumo:
The correlated probit model is frequently used for multiple ordered data since it allows to incorporate seamlessly different correlation structures. The estimation of the probit model parameters based on direct maximization of the limited information maximum likelihood is a numerically intensive procedure. We propose an extension of the EM algorithm for obtaining maximum likelihood estimates for a correlated probit model for multiple ordinal outcomes. The algorithm is implemented in the free software environment for statistical computing and graphics R. We present two simulation studies to examine the performance of the developed algorithm. We apply the model to data on 121 women with cervical or endometrial cancer. Patients developed normal tissue reactions as a result of post-operative external beam pelvic radiotherapy. In this work we focused on modeling the effects of a genetic factor on early skin and early urogenital tissue reactions and on assessing the strength of association between the two types of reactions. We established that there was an association between skin reactions and polymorphism XRCC3 codon 241 (C>T) (rs861539) and that skin and urogenital reactions were positively correlated. ACM Computing Classification System (1998): G.3.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014