7 resultados para binomial

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Павел Т. Стойнов - В тази работа се разглежда отрицателно биномното разпределение, известно още като разпределение на Пойа. Предполагаме, че смесващото разпределение е претеглено гама разпределение. Изведени са вероятностите в някои частни случаи. Дадени са рекурентните формули на Панжер.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMS subject classification: 60J80, 62F12, 62P10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only a few characterizations have been obtained in literatute for the negative binomial distribution (see Johnson et al., Chap. 5, 1992). In this article a characterization of the negative binomial distribution related to random sums is obtained which is motivated by the geometric distribution characterization given by Khalil et al. (1991). An interpretation in terms of an unreliable system is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62F15.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was supported by the Bulgarian National Science Fund under grant BY-TH-105/2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a class of models used with success in the modelling of climatological sequences. These models are based on the notion of renewal. At first, we examine the probabilistic aspects of these models to afterwards study the estimation of their parameters and their asymptotical properties, in particular the consistence and the normality. We will discuss for applications, two particular classes of alternating renewal processes at discrete time. The first class is defined by laws of sojourn time that are translated negative binomial laws and the second class, suggested by Green is deduced from alternating renewal process in continuous time with sojourn time laws which are exponential laws with parameters α^0 and α^1 respectively.