15 resultados para binary hyperplane
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this work, we determine the coset weight spectra of all binary cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary linear codes of lengths up to 33 which are distance-optimal, by using some of the algebraic properties of the codes and a computer assisted search. Having these weight spectra the monotony of the function of the undetected error probability after t-error correction P(t)ue (C,p) could be checked with any precision for a linear time. We have used a programm written in Maple to check the monotony of P(t)ue (C,p) for the investigated codes for a finite set of points of p € [0, p/(q-1)] and in this way to determine which of them are not proper.
Resumo:
* The author is supported by a Return Fellowship from the Alexander von Humboldt Foundation.
Resumo:
This work has been partially supported by Grant No. DO 02-275, 16.12.2008, Bulgarian NSF, Ministry of Education and Science.
Resumo:
This work was presented in part at the 8th International Conference on Finite Fields and Applications Fq^8 , Melbourne, Australia, 9-13 July, 2007.
Resumo:
* This work was partially supported by the Bulgarian National Science Fund under Contract No. MM – 503/1995.
Resumo:
∗ This work was supported in part by the Bulgarian NSF under Grant MM-901/99
Resumo:
Binary distributed representations of vector data (numerical, textual, visual) are investigated in classification tasks. A comparative analysis of results for various methods and tasks using artificial and real-world data is given.
Resumo:
Usually, data mining projects that are based on decision trees for classifying test cases will use the probabilities provided by these decision trees for ranking classified test cases. We have a need for a better method for ranking test cases that have already been classified by a binary decision tree because these probabilities are not always accurate and reliable enough. A reason for this is that the probability estimates computed by existing decision tree algorithms are always the same for all the different cases in a particular leaf of the decision tree. This is only one reason why the probability estimates given by decision tree algorithms can not be used as an accurate means of deciding if a test case has been correctly classified. Isabelle Alvarez has proposed a new method that could be used to rank the test cases that were classified by a binary decision tree [Alvarez, 2004]. In this paper we will give the results of a comparison of different ranking methods that are based on the probability estimate, the sensitivity of a particular case or both.
Resumo:
Similar to classic Signal Detection Theory (SDT), recent optimal Binary Signal Detection Theory (BSDT) and based on it Neural Network Assembly Memory Model (NNAMM) can successfully reproduce Receiver Operating Characteristic (ROC) curves although BSDT/NNAMM parameters (intensity of cue and neuron threshold) and classic SDT parameters (perception distance and response bias) are essentially different. In present work BSDT/NNAMM optimal likelihood and posterior probabilities are analytically analyzed and used to generate ROCs and modified (posterior) mROCs, optimal overall likelihood and posterior. It is shown that for the description of basic discrimination experiments in psychophysics within the BSDT a ‘neural space’ can be introduced where sensory stimuli as neural codes are represented and decision processes are defined, the BSDT’s isobias curves can simultaneously be interpreted as universal psychometric functions satisfying the Neyman-Pearson objective, the just noticeable difference (jnd) can be defined and interpreted as an atom of experience, and near-neutral values of biases are observers’ natural choice. The uniformity or no-priming hypotheses, concerning the ‘in-mind’ distribution of false-alarm probabilities during ROC or overall probability estimations, is introduced. The BSDT’s and classic SDT’s sensitivity, bias, their ROC and decision spaces are compared.
Resumo:
In this paper we present 35 new extremal binary self-dual doubly-even codes of length 88. Their inequivalence is established by invariants. Moreover, a construction of a binary self-dual [88, 44, 16] code, having an automorphism of order 21, is given.
Resumo:
The result of the distributed computing projectWieferich@Home is presented: the binary periodic numbers of bit pseudo-length j ≤ 3500 obtained by replication of a bit string of bit pseudo-length k ≤ 24 and increased by one are Wieferich primes only for the cases of 1092 or 3510.
Resumo:
Христина Костадинова, Красимир Йорджев - В статията се обсъжда представянето на произволна бинарна матрица с помощта на последователност от цели неотрицателни числа. Разгледани са някои предимства и недостатъци на това представяне като алтернатива на стандартното, общоприето представяне чрез двумерен масив. Показано е, че представянето на бинарните матрици с помощта на наредени n-торки от естествени числа води до по-бързи алгоритми и до съществена икономия на оперативна памет. Използуван е апарата на обектно-ориентираното програмиране със синтаксиса и семантиката на езика C++.
Resumo:
Николай Янков - Класифицирани са с точност до еквивалетност всички оптимални двоични самодуални [62, 31, 12] кодове, които притежават автоморфизъм от ред 7 с 8 независими цикъла при разлагане на независими цикли. Използвайки метода за конструиране на самодуални кодове, притежаващи автоморфизъм от нечетен прост ред е доказано, че съществуват точно 8 нееквивалентни такива кода. Три от получените кодове имат тегловна функция, каквато досега не бе известно да съществува.
Resumo:
Иво Й. Дамянов - Манипулирането на булеви функции е основнo за теоретичната информатика, в това число логическата оптимизация, валидирането и синтеза на схеми. В тази статия се разглеждат някои първоначални резултати относно връзката между граф-базираното представяне на булевите функции и свойствата на техните променливи.
Resumo:
In this paper the low autocorrelation binary sequence problem (LABSP) is modeled as a mixed integer quadratic programming (MIQP) problem and proof of the model’s validity is given. Since the MIQP model is semidefinite, general optimization solvers can be used, and converge in a finite number of iterations. The experimental results show that IQP solvers, based on this MIQP formulation, are capable of optimally solving general/skew-symmetric LABSP instances of up to 30/51 elements in a moderate time. ACM Computing Classification System (1998): G.1.6, I.2.8.