3 resultados para active learning
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
An eMathTeacher [Sánchez-Torrubia 2007a] is an eLearning on line self assessment tool that help students to active learning math algorithms by themselves, correcting their mistakes and providing them with clues to find the right solution. The tool presented in this paper is an example of this new concept on Computer Aided Instruction (CAI) resources and has been implemented as a Java applet and designed as an auxiliary instrument for both classroom teaching and individual practicing of Fleury’s algorithm. This tool, included within a set of eMathTeacher tools, has been designed as educational complement of Graph Algorithm active learning for first course students. Its characteristics of visualization, simplicity and interactivity, make this tutorial a great value pedagogical instrument.
Resumo:
The proliferation of course management systems (CMS) in the last decade stimulated educators in establishing novel active e-learning practices. Only a few of these practices, however, have been systematically described and published as pedagogic patterns. The lack of formal patterns is an obstacle to the systematic reuse of beneficial active e-learning experiences. This paper aims to partially fill the void by offering a collection of active e-learning patterns that are derived from our continuous course design experience in standard CMS environments, such as Moodle and Black-board. Our technical focus is on active e-learning patterns that can boost student interest in computing-related fields and increase student enrolment in computing-related courses. Members of the international e-learning community can benefit from active e-learning patterns by applying them in the design of new CMS-based courses – in computing and other technical fields.
Resumo:
Presented is webComputing – a general framework of mathematically oriented services including remote access to hardware and software resources for mathematical computations, and web interface to dynamic interactive computations and visualization in a diversity of contexts: mathematical research and engineering, computer-aided mathematical/technical education and distance learning. webComputing builds on the innovative webMathematica technology connecting technical computing system Mathematica to a web server and providing tools for building dynamic and interactive web-interface to Mathematica-based functionality. Discussed are the conception and some of the major components of webComputing service: Scientific Visualization, Domain- Specific Computations, Interactive Education, and Authoring of Interactive Pages.