17 resultados para Uniformly Gateaux Smooth Norms
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
It is proved that a representable non-separable Banach space does not admit uniformly Gâteaux-smooth norms. This is true in particular for C(K) spaces where K is a separable non-metrizable Rosenthal compact space.
Resumo:
* Supported by grants: AV ĈR 101-95-02, GAĈR 201-94-0069 (Czech Republic) and NSERC 7926 (Canada).
Resumo:
*Supported in part by GAˇ CR 201-98-1449 and AV 101 9003. This paper is based on a part of the author’s MSc thesis written under the supervison of Professor V. Zizler.
Resumo:
We prove that if a Banach space X admits a Lipschitz β-smooth bump function, then (X ∗ , weak ∗ ) is fragmented by a metric, generating a topology, which is stronger than the τβ -topology. We also use this to prove that if X ∗ admits a Lipschitz Gateaux-smooth bump function, then X is sigma-fragmentable.
Resumo:
We survey several applications of Simons’ inequality and state related open problems. We show that if a Banach space X has a strongly sub-differentiable norm, then every bounded weakly closed subset of X is an intersection of finite union of balls.
Resumo:
We give a new construction of uniformly convex norms with a power type modulus on super-reflexive spaces based on the notion of dentability index. Furthermore, we prove that if the Szlenk index of a Banach space is less than or equal to ω (first infinite ordinal) then there is an equivalent weak* lower semicontinuous positively homogeneous functional on X* satisfying the uniform Kadec-Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK* renorming problems for Lp(X) spaces and C(K) spaces for K scattered compact space.
Resumo:
Here we study the integers (d, g, r) such that on a smooth projective curve of genus g there exists a rank r stable vector bundle with degree d and spanned by its global sections.
Resumo:
Let X be a closed subspace of B(H) for some Hilbert space H. In [9], Pisier introduced Sp [X] (1 ≤ p ≤ +∞) by setting Sp [X] = (S∞ [X] , S1 [X])θ , (where θ =1/p , S∞ [X] = S∞ ⊗min X and S1 [X] = S1 ⊗∧ X) and showed that there are p−matricially normed spaces. In this paper we prove that conversely, if X is a p−matricially normed space with p = 1, then there is an operator structure on X, such that M1,n (X) = S1 [X] where Sn,1 [X] is the finite dimentional version of S1 [X]. For p = 1, we have no answer.
Resumo:
∗ This research is partially supported by the Bulgarian National Science Fund under contract MM-403/9
Resumo:
A new, unified presentation of the ideal norms of factorization of operators through Banach lattices and related ideal norms is given.
Resumo:
2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15
Resumo:
AMS Subj. Classification: 49J15, 49M15
Resumo:
2000 Mathematics Subject Classification: 14C05, 14L30, 14E15, 14J35.
Resumo:
The deviations of some entire functions of exponential type from real-valued functions and their derivatives are estimated. As approximation metrics we use the Lp-norms and power variations on R. Theorems presented here correspond to the Ganelius and Popov results concerning the one-sided trigonometric approximation of periodic functions (see [4, 5 and 8]). Some related facts were announced in [2, 3, 6 and 7].