2 resultados para Toponym disambiguation

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the ultimate aims of Natural Language Processing is to automate the analysis of the meaning of text. A fundamental step in that direction consists in enabling effective ways to automatically link textual references to their referents, that is, real world objects. The work presented in this paper addresses the problem of attributing a sense to proper names in a given text, i.e., automatically associating words representing Named Entities with their referents. The method for Named Entity Disambiguation proposed here is based on the concept of semantic relatedness, which in this work is obtained via a graph-based model over Wikipedia. We show that, without building the traditional bag of words representation of the text, but instead only considering named entities within the text, the proposed method achieves results competitive with the state-of-the-art on two different datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Word Sense Disambiguation, the process of identifying the meaning of a word in a sentence when the word has multiple meanings, is a critical problem of machine translation. It is generally very difficult to select the correct meaning of a word in a sentence, especially when the syntactical difference between the source and target language is big, e.g., English-Korean machine translation. To achieve a high level of accuracy of noun sense selection in machine translation, we introduced a statistical method based on co-occurrence relation of words in sentences and applied it to the English-Korean machine translator RyongNamSan. ACM Computing Classification System (1998): I.2.7.