1 resultado para Three-dimensional domain
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Rhode Island School of Design (1)
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (20)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (71)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (124)
- CentAUR: Central Archive University of Reading - UK (50)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (104)
- Cochin University of Science & Technology (CUSAT), India (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (3)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (132)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (4)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (12)
- National Center for Biotechnology Information - NCBI (40)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (73)
- Queensland University of Technology - ePrints Archive (79)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (82)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (19)
- Universidade Complutense de Madrid (6)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- University of Connecticut - USA (1)
- University of Michigan (15)
- University of Queensland eSpace - Australia (16)
Resumo:
Иван Христов Димовски, Юлиан Цанков Цанков - Построени са директни операционни смятания за функции u(x, y, t), непрекъснати в област от вида D = [0, a] × [0, b] × [0, ∞). Наред с класическата дюамелова конволюция, построението използва и две некласически конволюции за операторите ∂2x и ∂2y. Тези три едномерни конволюции се комбинират в една тримерна конволюция u ∗ v в C(D). Вместо подхода на Я. Микусински, основаващ се на конволюционни частни, се развива алтернативен подход с използване на мултипликаторните частни на конволюционната алгебра (C(D), ∗).