6 resultados para Supergeometry LCQFT Supersimmetries Supermanifolds Lorentzian manifold Super-Cartan
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: 53C15, 53C40, 53C42.
Resumo:
Partially supported by the Technical University of Gabrovo under Grant C-801/2008
Resumo:
* The research has been partially supported by Bulgarian Funding Organizations, sponsoring the Algebra Section of the Mathematics Institute, Bulgarian Academy of Sciences, a Contract between the Humboldt Univestit¨at and the University of Sofia, and Grant MM 412 / 94 from the Bulgarian Board of Education and Technology
Resumo:
Often the designer of ROLAP applications follows up with the question “can I create a little joiner table with just the two dimension keys and then connect that table to the fact table?” In a classic dimensional model there are two options - (a) both dimensions are modeled independently or (b) two dimensions are combined into a super-dimension with a single key. The second approach is not widely used in ROLAP environments but it is an important sparsity handling method in MOLAP systems. In ROLAP this design technique can also bring storage and performance benefits, although the model becomes more complicated. The dependency between dimensions is a key factor that the designers have to consider when choosing between the two options. In this paper we present the results of our storage and performance experiments over a real life data cubes in reference to these design approaches. Some conclusions are drawn.
Resumo:
Ива Р. Докузова, Димитър Р. Разпопов - В настоящата статия е разгледан клас V оттримерни риманови многообразия M с метрика g и два афинорни тензора q и S. Дефинирана е и друга метрика ¯g в M. Локалните координати на всички тези тензори са циркулантни матрици. Намерени са: 1) зависимост между тензора на кривина R породен от g и тензора на кривина ¯R породен от ¯g; 2) тъждество за тензора на кривина R в случая, когато тензорът на кривина ¯R се анулира; 3) зависимост между секционната кривина на прозволна двумерна q-площадка {x, qx} и скаларната кривина на M.
Resumo:
2010 Mathematics Subject Classification: 35R60, 60H15, 74H35.