12 resultados para Stolarsky Type Inequality
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
MSC 2010: 03E72, 26E50, 28E10
Resumo:
We consider the question whether the assumption of convexity of the set involved in Clarke-Ledyaev inequality can be relaxed. In the case when the point is outside the convex hull of the set we show that Clarke-Ledyaev type inequality holds if and only if there is certain geometrical relation between the point and the set.
Resumo:
2000 Mathematics Subject Classification: 42B20, 42B25, 42B35
Resumo:
2000 Math. Subject Classification: Primary 42B20, 42B25, 42B35
Resumo:
Mathematics Subject Classification: Primary 42B20, 42B25, 42B35
Resumo:
Снежана Христова, Кремена Стефанова, Лиляна Ванкова - В работата са решени няколко нови видове линейни дискретни неравенства, които съдържат максимума на неизвестната функция в отминал интервал от време. Някои от тези неравенства са приложени за изучаване непрекъснатата зависимост от смущения при дискретни уравнения с максимуми.
Resumo:
2000 Mathematics Subject Classification: Primary 26A24, 26D15; Secondary 41A05
Resumo:
2000 Mathematics Subject Classification: Primary 46F12, Secondary 44A15, 44A35
Resumo:
Some new nonlinear integral inequalities that involve the maximum of the unknown scalar function of one variable are solved. The considered inequalities are generalizations of the classical nonlinear integral inequality of Bihari. The importance of these integral inequalities is defined by their wide applications in qualitative investigations of differential equations with "maxima" and it is illustrated by some direct applications.
Resumo:
2000 Mathematics Subject Classification: 41A25, 41A27, 41A36.
Resumo:
2010 Mathematics Subject Classification: 26D10.
Resumo:
2000 Mathematics Subject Classification: 26D10, 26D15.