19 resultados para STOCHASTIC PROCESSES

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Косто В. Митов - Разклоняващите се стохастични процеси са модели на популационната динамика на обекти, които имат случайно време на живот и произвеждат потомци в съответствие с дадени вероятностни закони. Типични примери са ядрените реакции, клетъчната пролиферация, биологичното размножаване, някои химични реакции, икономически и финансови явления. В този обзор сме се опитали да представим съвсем накратко някои от най-важните моменти и факти от историята, теорията и приложенията на разклоняващите се процеси.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 62F12, 62M05, 62M09, 62M10, 60G42.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 65C05

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60K15, 60K20, 60G20,60J75, 60J80, 60J85, 60-08, 90B15.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to establish some mixture distributions that arise in stochastic processes. Some basic functions associated with the probability mass function of the mixture distributions, such as k-th moments, characteristic function and factorial moments are computed. Further we obtain a three-term recurrence relation for each established mixture distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 45K05, 60J60, 60G50, 65N06, 80-99.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mathematical Subject Classification 2010:26A33, 33E99, 15A52, 62E15.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60G52, 90B30.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classi cation: 49L60, 60J60, 93E20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 76M35, 82B31

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multitype branching processes (MTBP) model branching structures, where the nodes of the resulting tree are particles of different types. Usually such a process is not observable in the sense of the whole tree, but only as the “generation” at a given moment in time, which consists of the number of particles of every type. This requires an EM-type algorithm to obtain a maximum likelihood (ML) estimate of the parameters of the branching process. Using a version of the inside-outside algorithm for stochastic context-free grammars (SCFG), such an estimate could be obtained for the offspring distribution of the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical Bienaymé-Galton-Watson (BGW) branching process can be interpreted as mathematical model of population dynamics when the members of an isolated population reproduce themselves independently of each other according to a stochastic law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 60J85, 62P10, 92D25.