15 resultados para Quasi-Irresolute
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The aim of this paper is to continue the study of θ-irresolute and quasi-irresolute functions as well as to give an example of a function which is θ-irresolute but neither quasi-irresolute nor an R-map and thus give an answer to a question posed by Ganster, Noiri and Reilly. We prove that RS-compactness is preserved under open, quasi-irresolute surjections.
Resumo:
The general ordinary quasi-differential expression M of n-th order with complex coefficients and its formal adjoint M + are considered over a regoin (a, b) on the real line, −∞ ≤ a < b ≤ ∞, on which the operator may have a finite number of singular points. By considering M over various subintervals on which singularities occur only at the ends, restrictions of the maximal operator generated by M in L2|w (a, b) which are regularly solvable with respect to the minimal operators T0 (M ) and T0 (M + ). In addition to direct sums of regularly solvable operators defined on the separate subintervals, there are other regularly solvable restrications of the maximal operator which involve linking the various intervals together in interface like style.
Resumo:
A group-theoretic method of obtaining more general class of generating functions from a given class of partial quasi-bilateral generating functions involving Hermite, Laguerre and Gegenbaur polynomials are discussed.
Resumo:
We present the original proof, based on the Doitchinov completion, that a totally bounded quiet quasi-uniformity is a uniformity. The proof was obtained about ten years ago, but never published. In the mean-time several stronger results have been obtained by more direct arguments [8, 9, 10]. In particular it follows from Künzi’s [8] proofs that each totally bounded locally quiet quasi-uniform space is uniform, and recently Déak [10] observed that even each totally bounded Cauchy quasi-uniformity is a uniformity.
Resumo:
We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.
Resumo:
2000 Mathematics Subject Classification: 60J60, 62M99.
Resumo:
Владимир Тодоров, Петър Стоев - Тази бележка съдържа елементарна конструкция на множество с указаните в заглавието свойства. Да отбележим в допълнение, че така полученото множество остава напълно несвързано дори и след като се допълни с краен брой елементи.
Resumo:
Цветан Д. Христов, Недю Ив. Попиванов, Манфред Шнайдер - Изучени са някои тримерни гранични задачи за уравнения от смесен тип. За уравнения от типа на Трикоми те са формулирани от М. Протер през 1952, като тримерни аналози на задачите на Дарбу или Коши–Гурса в равнината. Добре известно е, че новите задачи са некоректни. Ние формулираме нова гранична задача за уравнения от типа на Келдиш и даваме понятие за квазиругулярно решение на тази задача и на eдна от задачите на Протер. Намерени са достатъчни условия за единственост на такива решения.
Resumo:
Петра Г. Стайнова - Квази-линдельофовите пространства са въведени от Архангелски като усилване на слабо-линдельофовите. В тази статия се разглеждат няколко свойства на квази-линдельофовите пространства и се правят сравнения със съответни ре- зултати за линдельофовите и слабо-линдельофовите пространства. Дадени са няколко примера, включително на слабо-линдельофово пространство, което не е квази-линдельофово; на пространство, което е топологично произведение на две линдельофови, но не е дори квази-линдельофово, и на пространство, което е квази-линдельофово, но не Суслиново. Накрая са поставени няколко отворени въпроси.
Resumo:
2010 Mathematics Subject Classification: Primary 35S05; Secondary 35A17.
Resumo:
2010 Mathematics Subject Classification: 62F12, 62M05, 62M09, 62M10, 60G42.
Resumo:
2000 Mathematics Subject Classification: 45F15, 45G10, 46B38.
Resumo:
2000 Mathematics Subject Classification: 47B47, 47B10, 47A30.
Resumo:
2000 Mathematics Subject Classification: 39A10.