7 resultados para Optimal Sampling Time
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
AMS Subj. Classification: 49J15, 49M15
Resumo:
* This research was supported by a grant from the Greek Ministry of Industry and Technology.
Resumo:
Two assembly line balancing problems are addressed. The first problem (called SALBP-1) is to minimize number of linearly ordered stations for processing n partially ordered operations V = {1, 2, ..., n} within the fixed cycle time c. The second problem (called SALBP-2) is to minimize cycle time for processing partially ordered operations V on the fixed set of m linearly ordered stations. The processing time ti of each operation i ∈V is known before solving problems SALBP-1 and SALBP-2. However, during the life cycle of the assembly line the values ti are definitely fixed only for the subset of automated operations V\V . Another subset V ⊆ V includes manual operations, for which it is impossible to fix exact processing times during the whole life cycle of the assembly line. If j ∈V , then operation times tj can differ for different cycles of the production process. For the optimal line balance b of the assembly line with operation times t1, t2, ..., tn, we investigate stability of its optimality with respect to possible variations of the processing times tj of the manual operations j ∈ V .
Resumo:
In this paper the network problem of determining all-pairs shortest-path is examined. A distributed algorithm which runs in O(n) time on a network of n nodes is presented. The number of messages of the algorithm is O(e+n log n) where e is the number of communication links of the network. We prove that this algorithm is time optimal.
Resumo:
This paper considers the problem of finding an optimal deployment of information resources on an InfoStation network in order to minimize the overhead and reduce the time needed to satisfy user requests for resources. The RG-Optimization problem and an approach for its solving are presented as well.
Resumo:
We consider the problems of finding two optimal triangulations of a convex polygon: MaxMin area and MinMax area. These are the triangulations that maximize the area of the smallest area triangle in a triangulation, and respectively minimize the area of the largest area triangle in a triangulation, over all possible triangulations. The problem was originally solved by Klincsek by dynamic programming in cubic time [2]. Later, Keil and Vassilev devised an algorithm that runs in O(n^2 log n) time [1]. In this paper we describe new geometric findings on the structure of MaxMin and MinMax Area triangulations of convex polygons in two dimensions and their algorithmic implications. We improve the algorithm’s running time to quadratic for large classes of convex polygons. We also present experimental results on MaxMin area triangulation.
Resumo:
Йордан Йорданов, Андрей Василев - В работата се изследват методи за решаването на задачи на оптималното управление в дискретно време с безкраен хоризонт и явни управления. Дадена е обосновка на една процедура за решаване на такива задачи, базирана на множители на Лагранж, коята често се употребява в икономическата литература. Извеждени са необходимите условия за оптималност на базата на уравнения на Белман и са приведени достатъчни условия за оптималност при допускания, които често се използват в икономиката.