15 resultados para Monotone And Semi-monotone Operators
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M, E) is relatively compact, etc. We also show that our class includes Gulko compact. In the second part of the paper we examine under which conditions a bounded linear operator T : X ∗ → Y so that T |BX ∗ : (BX ∗ , w∗ ) → Y is a Baire-1 function, is a pointwise limit of a sequence (Tn ) of operators with T |BX ∗ : (BX ∗ , w∗ ) → (Y, · ) continuous for all n ∈ N. Our results in this case are connected with classical results of Choquet, Odell and Rosenthal.
Resumo:
∗ The work is partially supported by NSFR Grant No MM 409/94.
Resumo:
Mathematics Subject Classification: 47B38, 31B10, 42B20, 42B15.
Resumo:
2000 Mathematics Subject Classification: Primary 46E15, 54C55; Secondary 28B20.
Resumo:
The deviations of some entire functions of exponential type from real-valued functions and their derivatives are estimated. As approximation metrics we use the Lp-norms and power variations on R. Theorems presented here correspond to the Ganelius and Popov results concerning the one-sided trigonometric approximation of periodic functions (see [4, 5 and 8]). Some related facts were announced in [2, 3, 6 and 7].
Resumo:
2000 Mathematics Subject Classification: 54H25, 47H10.
Resumo:
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.
Resumo:
Using monotone bifunctions, we introduce a recession concept for general equilibrium problems relying on a variational convergence notion. The interesting purpose is to extend some results of P. L. Lions on variational problems. In the process we generalize some results by H. Brezis and H. Attouch relative to the convergence of the resolvents associated with maximal monotone operators.
Resumo:
∗ Cette recherche a été partiellement subventionnée, en ce qui concerne le premier et le dernier auteur, par la bourse OTAN CRG 960360 et pour le second auteur par l’Action Intégrée 95/0849 entre les universités de Marrakech, Rabat et Montpellier.
Resumo:
2000 Mathematics Subject Classification: 33D15, 33D90, 39A13
Resumo:
MSC 2010: 30C45, 30C50
Resumo:
2010 Mathematics Subject Classification: 42B10, 47A07, 35S05.
Resumo:
Stochastic arithmetic has been developed as a model for exact computing with imprecise data. Stochastic arithmetic provides confidence intervals for the numerical results and can be implemented in any existing numerical software by redefining types of the variables and overloading the operators on them. Here some properties of stochastic arithmetic are further investigated and applied to the computation of inner products and the solution to linear systems. Several numerical experiments are performed showing the efficiency of the proposed approach.
Resumo:
This paper presents the main achievements of the author’s PhD dissertation. The work is dedicated to mathematical and semi-empirical approaches applied to the case of Bulgarian wildland fires. After the introductory explanations, short information from every chapter is extracted to cover the main parts of the obtained results. The methods used are described in brief and main outcomes are listed. ACM Computing Classification System (1998): D.1.3, D.2.0, K.5.1.
Resumo:
2010 Mathematics Subject Classification: 47A10.