15 resultados para Monotone
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Algorithmic resources are considered for elaboration and identification of monotone functions and some alternate structures are brought, which are more explicit in sense of structure and quantities and which can serve as elements of practical identification algorithms. General monotone recognition is considered on multi- dimensional grid structure. Particular reconstructing problem is reduced to the monotone recognition through the multi-dimensional grid partitioning into the set of binary cubes.
Resumo:
Using monotone bifunctions, we introduce a recession concept for general equilibrium problems relying on a variational convergence notion. The interesting purpose is to extend some results of P. L. Lions on variational problems. In the process we generalize some results by H. Brezis and H. Attouch relative to the convergence of the resolvents associated with maximal monotone operators.
Resumo:
2000 Mathematics Subject Classification: 49J40, 49J35, 58E30, 47H05
Resumo:
Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of these extensions by taking simultaneously into account a pseudo-metric as regularization and a perturbation in an inexact version of the algorithm.
Resumo:
We extend the method of quasilinearization to differential equations in abstract normal cones. Under some assumptions, corresponding monotone iterations converge to the unique solution of our problem and this convergence is superlinear or semi–superlinear
Resumo:
We work on the research of a zero of a maximal monotone operator on a real Hilbert space. Following the recent progress made in the context of the proximal point algorithm devoted to this problem, we introduce simultaneously a variable metric and a kind of relaxation in the perturbed Tikhonov’s algorithm studied by P. Tossings. So, we are led to work in the context of the variational convergence theory.
Resumo:
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.
Resumo:
∗ Cette recherche a été partiellement subventionnée, en ce qui concerne le premier et le dernier auteur, par la bourse OTAN CRG 960360 et pour le second auteur par l’Action Intégrée 95/0849 entre les universités de Marrakech, Rabat et Montpellier.
Resumo:
The general iteration method for nonexpansive mappings on a Banach space is considered. Under some assumption of fast enough convergence on the sequence of (“almost” nonexpansive) perturbed iteration mappings, if the basic method is τ−convergent for a suitable topology τ weaker than the norm topology, then the perturbed method is also τ−convergent. Application is presented to the gradient-prox method for monotone inclusions in Hilbert spaces.
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
Composition problem is considered for partition constrained vertex subsets of n dimensional unit cube E^n . Generating numerical characteristics of E^n subsets partitions is considered by means of the same characteristics in 1 − n dimensional unit cube, and construction of corresponding subsets is given for a special particular case. Using pairs of lower layer characteristic vectors for E^(1-n) more characteristic vectors for E^n are composed which are boundary from one side, and which take part in practical recognition of validness of a given candidate vector of partitions.
Resumo:
AMS Subj. Classification: 49J15, 49M15
Resumo:
AMS subject classification: 65K10, 49M07, 90C25, 90C48.
Resumo:
2000 Mathematics Subject Classification: 60G70, 60F05.
Resumo:
2000 Mathematics Subject Classification: 62H10.