5 resultados para Linear matrix inequalities (LMI)

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Снежана Христова, Кремена Стефанова, Лиляна Ванкова - В работата са решени няколко нови видове линейни дискретни неравенства, които съдържат максимума на неизвестната функция в отминал интервал от време. Някои от тези неравенства са приложени за изучаване непрекъснатата зависимост от смущения при дискретни уравнения с максимуми.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 47A56, 47A57,47A63

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a refinement of some successive overrelaxation methods based on the reverse Gauss–Seidel method for solving a system of linear equations Ax = b by the decomposition A = Tm − Em − Fm, where Tm is a banded matrix of bandwidth 2m + 1. We study the convergence of the methods and give software implementation of algorithms in Mathematica package with numerical examples. ACM Computing Classification System (1998): G.1.3.