10 resultados para Learning set

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

questions of forming of learning sets for artificial neural networks in problems of lossless data compression are considered. Methods of construction and use of learning sets are studied. The way of forming of learning set during training an artificial neural network on the data stream is offered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a model for development of project proposals by students as an approach to teaching information technology while promoting entrepreneurship and reflection. In teams of 3 to 5 participants, students elaborate a project proposal on a topic they have negotiated with each other and with the teacher. The project domain is related to the practical application of state-of-theart information technology in areas of substantial public interest or of immediate interest to the participants. This gives them ample opportunities for reflection not only on technical but also on social, economic, environmental and other dimensions of information technology. This approach has long been used with students of different years and programs of study at the Faculty of Mathematics and Informatics, Plovdiv University “Paisiy Hilendarski”. It has been found to develop all eight key competences for lifelong learning set forth in the Reference Framework and procedural skills required in real life.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present one approach for extending the learning set of a classification algorithm with additional metadata. It is used as a base for giving appropriate names to found regularities. The analysis of correspondence between connections established in the attribute space and existing links between concepts can be used as a test for creation of an adequate model of the observed world. Meta-PGN classifier is suggested as a possible tool for establishing these connections. Applying this approach in the field of content-based image retrieval of art paintings provides a tool for extracting specific feature combinations, which represent different sides of artists' styles, periods and movements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years Web has become mainstream medium for communication and information dissemination. This paper presents approaches and methods for adaptive learning implementation, which are used in some contemporary web-interfaced Learning Management Systems (LMSs). The problem is not how to create electronic learning materials, but how to locate and utilize the available information in personalized way. Different attitudes to personalization are briefly described in section 1. The real personalization requires a user profile containing information about preferences, aims, and educational history to be stored and used by the system. These issues are considered in section 2. A method for development and design of adaptive learning content in terms of learning strategy system support is represented in section 3. Section 4 includes a set of innovative personalization services that are suggested by several very important research projects (SeLeNe project, ELENA project, etc.) dated from the last few years. This section also describes a model for role- and competency-based learning customization that uses Web Services approach. The last part presents how personalization techniques are implemented in Learning Grid-driven applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E-learning is supposing an innovation in teaching, raising from the development of new technologies. It is based in a set of educational resources, including, among others, multimedia or interactive contents accessible through Internet or Intranet networks. A whole spectrum of tools and services support e-learning, some of them include auto-evaluation and automated correction of test-like exercises, however, this sort of exercises are very constrained because of its nature: fixed contents and correct answers suppose a limit in the way teachers may evaluation students. In this paper we propose a new engine that allows validating complex exercises in the area of Data Structures and Algorithms. Correct solutions to exercises do not rely only in how good the execution of the code is, or if the results are same as expected. A set of criteria on algorithm complexity or correctness in the use of the data structures are required. The engine presented in this work covers a wide set of exercises with these characteristics allowing teachers to establish the set of requirements for a solution, and students to obtain a measure on the quality of their solution in the same terms that are later required for exams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An eMathTeacher [Sánchez-Torrubia 2007a] is an eLearning on line self assessment tool that help students to active learning math algorithms by themselves, correcting their mistakes and providing them with clues to find the right solution. The tool presented in this paper is an example of this new concept on Computer Aided Instruction (CAI) resources and has been implemented as a Java applet and designed as an auxiliary instrument for both classroom teaching and individual practicing of Fleury’s algorithm. This tool, included within a set of eMathTeacher tools, has been designed as educational complement of Graph Algorithm active learning for first course students. Its characteristics of visualization, simplicity and interactivity, make this tutorial a great value pedagogical instrument.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of recognition on finite set of events is considered. The generalization ability of classifiers for this problem is studied within the Bayesian approach. The method for non-uniform prior distribution specification on recognition tasks is suggested. It takes into account the assumed degree of intersection between classes. The results of the analysis are applied for pruning of classification trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose the adaptive algorithm for solving a set of similar scheduling problems using learning technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in performance measure) and efficient (in computational time) heuristics by adapting local decisions for the scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern recognition apparatus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a Refactoring Learning Environment, which is intended to analyze and assess programming code, based on refactoring rules. The Refactoring Learning Environment architecture includes an intelligent assistant – Refactoring Agent, which is responsible for analysis and assessment of the code, written by students in real time by using a set of refactoring methods. According to the situation and based on the refactoring method, which should be applied, the agent could react in different ways. Its goal is to show the student, as much as possible, the weak places of his programming code and the possible ways to makes it better.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.