10 resultados para Learning Networks

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

questions of forming of learning sets for artificial neural networks in problems of lossless data compression are considered. Methods of construction and use of learning sets are studied. The way of forming of learning set during training an artificial neural network on the data stream is offered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E-learning is supposing an innovation in teaching, raising from the development of new technologies. It is based in a set of educational resources, including, among others, multimedia or interactive contents accessible through Internet or Intranet networks. A whole spectrum of tools and services support e-learning, some of them include auto-evaluation and automated correction of test-like exercises, however, this sort of exercises are very constrained because of its nature: fixed contents and correct answers suppose a limit in the way teachers may evaluation students. In this paper we propose a new engine that allows validating complex exercises in the area of Data Structures and Algorithms. Correct solutions to exercises do not rely only in how good the execution of the code is, or if the results are same as expected. A set of criteria on algorithm complexity or correctness in the use of the data structures are required. The engine presented in this work covers a wide set of exercises with these characteristics allowing teachers to establish the set of requirements for a solution, and students to obtain a measure on the quality of their solution in the same terms that are later required for exams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When Recurrent Neural Networks (RNN) are going to be used as Pattern Recognition systems, the problem to be considered is how to impose prescribed prototype vectors ξ^1,ξ^2,...,ξ^p as fixed points. The synaptic matrix W should be interpreted as a sort of sign correlation matrix of the prototypes, In the classical approach. The weak point in this approach, comes from the fact that it does not have the appropriate tools to deal efficiently with the correlation between the state vectors and the prototype vectors The capacity of the net is very poor because one can only know if one given vector is adequately correlated with the prototypes or not and we are not able to know what its exact correlation degree. The interest of our approach lies precisely in the fact that it provides these tools. In this paper, a geometrical vision of the dynamic of states is explained. A fixed point is viewed as a point in the Euclidean plane R2. The retrieving procedure is analyzed trough statistical frequency distribution of the prototypes. The capacity of the net is improved and the spurious states are reduced. In order to clarify and corroborate the theoretical results, together with the formal theory, an application is presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the paper, an ontogenic artificial neural network (ANNs) is proposed. The network uses orthogonal activation functions that allow significant reducing of computational complexity. Another advantage is numerical stability, because the system of activation functions is linearly independent by definition. A learning procedure for proposed ANN with guaranteed convergence to the global minimum of error function in the parameter space is developed. An algorithm for structure network structure adaptation is proposed. The algorithm allows adding or deleting a node in real-time without retraining of the network. Simulation results confirm the efficiency of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Supported by INTAS 00-626 and TIC 2003-09319-c03-03.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As is well known, the Convergence Theorem for the Recurrent Neural Networks, is based in Lyapunov ́s second method, which states that associated to any one given net state, there always exist a real number, in other words an element of the one dimensional Euclidean Space R, in such a way that when the state of the net changes then its associated real number decreases. In this paper we will introduce the two dimensional Euclidean space R2, as the space associated to the net, and we will define a pair of real numbers ( x, y ) , associated to any one given state of the net. We will prove that when the net change its state, then the product x ⋅ y will decrease. All the states whose projection over the energy field are placed on the same hyperbolic surface, will be considered as points with the same energy level. On the other hand we will prove that if the states are classified attended to their distances to the zero vector, only one pattern in each one of the different classes may be at the same energy level. The retrieving procedure is analyzed trough the projection of the states on that plane. The geometrical properties of the synaptic matrix W may be used for classifying the n-dimensional state- vector space in n classes. A pattern to be recognized is seen as a point belonging to one of these classes, and depending on the class the pattern to be retrieved belongs, different weight parameters are used. The capacity of the net is improved and the spurious states are reduced. In order to clarify and corroborate the theoretical results, together with the formal theory, an application is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural Networks have been successfully employed in different biomedical settings. They have been useful for feature extractions from images and biomedical data in a variety of diagnostic applications. In this paper, they are applied as a diagnostic tool for classifying different levels of gastric electrical uncoupling in controlled acute experiments on dogs. Data was collected from 16 dogs using six bipolar electrodes inserted into the serosa of the antral wall. Each dog underwent three recordings under different conditions: (1) basal state, (2) mild surgically-induced uncoupling, and (3) severe surgically-induced uncoupling. For each condition half-hour recordings were made. The neural network was implemented according to the Learning Vector Quantization model. This is a supervised learning model of the Kohonen Self-Organizing Maps. Majority of the recordings collected from the dogs were used for network training. Remaining recordings served as a testing tool to examine the validity of the training procedure. Approximately 90% of the dogs from the neural network training set were classified properly. However, only 31% of the dogs not included in the training process were accurately diagnosed. The poor neural-network based diagnosis of recordings that did not participate in the training process might have been caused by inappropriate representation of input data. Previous research has suggested characterizing signals according to certain features of the recorded data. This method, if employed, would reduce the noise and possibly improve the diagnostic abilities of the neural network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Categorising visitors based on their interaction with a website is a key problem in Web content usage. The clickstreams generated by various users often follow distinct patterns, the knowledge of which may help in providing customised content. This paper proposes an approach to clustering weblog data, based on ART2 neural networks. Due to the characteristics of the ART2 neural network model, the proposed approach can be used for unsupervised and self-learning data mining, which makes it adaptable to dynamically changing websites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Supported by projects CCG08-UAM TIC-4425-2009 and TEC2007-68065-C03-02

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the paper learning algorithm for adjusting weight coefficients of the Cascade Neo-Fuzzy Neural Network (CNFNN) in sequential mode is introduced. Concerned architecture has the similar structure with the Cascade-Correlation Learning Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of artificial neurons. CNFNN consists of neo-fuzzy neurons, which can be adjusted using high-speed linear learning procedures. Proposed CNFNN is characterized by high learning rate, low size of learning sample and its operations can be described by fuzzy linguistic “if-then” rules providing “transparency” of received results, as compared with conventional neural networks. Using of online learning algorithm allows to process input data sequentially in real time mode.