8 resultados para JEL classification codes: L15
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: 60G48, 60G20, 60G15, 60G17. JEL Classification: G10
Resumo:
JEL Classification: G21, L13.
Resumo:
Dedicated to the memory of the late professor Stefan Dodunekov on the occasion of his 70th anniversary. We classify up to multiplier equivalence maximal (v, 3, 1) optical orthogonal codes (OOCs) with v ≤ 61 and maximal (v, 3, 2, 1) OOCs with v ≤ 99. There is a one-to-one correspondence between maximal (v, 3, 1) OOCs, maximal cyclic binary constant weight codes of weight 3 and minimum dis tance 4, (v, 3; ⌊(v − 1)/6⌋) difference packings, and maximal (v, 3, 1) binary cyclically permutable constant weight codes. Therefore the classification of (v, 3, 1) OOCs holds for them too. Some of the classified (v, 3, 1) OOCs are perfect and they are equivalent to cyclic Steiner triple systems of order v and (v, 3, 1) cyclic difference families.
Resumo:
* Supported by COMBSTRU Research Training Network HPRN-CT-2002-00278 and the Bulgarian National Science Foundation under Grant MM-1304/03.
Resumo:
Partially supported by the Technical University of Gabrovo under Grant C-801/2008
Resumo:
2000 Mathematics Subject Classification: 94B05, 94B15.
Resumo:
Николай Янков - Класифицирани са с точност до еквивалетност всички оптимални двоични самодуални [62, 31, 12] кодове, които притежават автоморфизъм от ред 7 с 8 независими цикъла при разлагане на независими цикли. Използвайки метода за конструиране на самодуални кодове, притежаващи автоморфизъм от нечетен прост ред е доказано, че съществуват точно 8 нееквивалентни такива кода. Три от получените кодове имат тегловна функция, каквато досега не бе известно да съществува.
Resumo:
Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.