17 resultados para Infinite dimensional strategy spaces
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.
Resumo:
* The authors thank the “Swiss National Science Foundation” for its support.
Resumo:
Theodore Motzkin proved, in 1936, that any polyhedral convex set can be expressed as the (Minkowski) sum of a polytope and a polyhedral convex cone. We have provided several characterizations of the larger class of closed convex sets, Motzkin decomposable, in finite dimensional Euclidean spaces which are the sum of a compact convex set with a closed convex cone. These characterizations involve different types of representations of closed convex sets as the support functions, dual cones and linear systems whose relationships are also analyzed. The obtaining of information about a given closed convex set F and the parametric linear optimization problem with feasible set F from each of its different representations, including the Motzkin decomposition, is also discussed. Another result establishes that a closed convex set is Motzkin decomposable if and only if the set of extreme points of its intersection with the linear subspace orthogonal to its lineality is bounded. We characterize the class of the extended functions whose epigraphs are Motzkin decomposable sets showing, in particular, that these functions attain their global minima when they are bounded from below. Calculus of Motzkin decomposable sets and functions is provided.
Resumo:
Недю И. Попиванов, Тодор П. Попов, Рудолф Шерер - Разглеждат се четиримерни гранични задачи за нехомогенното вълново уравнение. Те са предложени от М. Протер като многомерни аналози на задачата на Дарбу в равнината. Известно е, че единственото обобщено решение може да има силна степенна особеност само в една гранична точка. Тази сингулярност е изолирана във върха на характеристичния конус и не се разпространява по конуса. Друг аспект на проблема е, че задачата не е фредхолмова, тъй като има безкрайномерно коядро. Предишни резултати сочат, че решението може да има най-много експоненциален ръст, но оставят открит въпроса дали наистина съществуват такива решения. Показваме, че отговора на този въпрос е положителен и строим обобщено решение на задачата на Протер с експоноциална особеност.
Resumo:
2000 Mathematics Subject Classification: Primary 47B47, 47B10; Secondary 47A30.
Resumo:
2000 Mathematics Subject Classification: Primary: 47B47, 47B10; secondary 47A30.
Resumo:
The concept of data independence designates the techniques that allow data to be changed without affecting the applications that process it. The different structures of the information bases require corresponded tools for supporting data independence. A kind of information bases (the Multi-dimensional Numbered Information Spaces) are pointed in the paper. The data independence in such information bases is discussed.
Resumo:
We are concerned with two-level optimization problems called strongweak Stackelberg problems, generalizing the class of Stackelberg problems in the strong and weak sense. In order to handle the fact that the considered two-level optimization problems may fail to have a solution under mild assumptions, we consider a regularization involving ε-approximate optimal solutions in the lower level problems. We prove the existence of optimal solutions for such regularized problems and present some approximation results when the parameter ǫ goes to zero. Finally, as an example, we consider an optimization problem associated to a best bound given in [2] for a system of nondifferentiable convex inequalities.
Resumo:
Let in even-dimensional a±nely connected space without a torsion A2m be given a composition Xm£Xm by the affinor a¯ ®. The affinor b¯ ®, determined with the help of the eigen-vectors of the matrix (a¯ ®), de¯nes the second composition Ym £ Y m. Conjugate compositions are introduced by the condition: the a±nors of any of both compositions transform the vectors from the one position of the composition, generated by the other a±nor, in the vectors from the another its position. It is proved that the compositions de¯ne by a±nors a¯ ® and b¯ ® are conjugate. It is proved also that if the composition Xm£Xm is Cartesian and composition Ym£Y m is Cartesian or chebyshevian, or geodesic than the space A2m is affine.
Resumo:
Given a differentiable action of a compact Lie group G on a compact smooth manifold V , there exists [3] a closed embedding of V into a finite-dimensional real vector space E so that the action of G on V may be extended to a differentiable linear action (a linear representation) of G on E. We prove an analogous equivariant embedding theorem for compact differentiable spaces (∞-standard in the sense of [6, 7, 8]).
Resumo:
We prove that if f is a real valued lower semicontinuous function on a Banach space X and if there exists a C^1, real valued Lipschitz continuous function on X with bounded support and which is not identically equal to zero, then f is Lipschitz continuous of constant K provided all lower subgradients of f are bounded by K. As an application, we give a regularity result of viscosity supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions which satisfy a coercive condition. This last result slightly improves some earlier work by G. Barles and H. Ishii.
Resumo:
In this article we explore the so-called two-dimensional tree− search problem. We prove that for integers m of the form m = (2^(st) − 1)/(2^s − 1) the rectangles A(m, n) are all tight, no matter what n is. On the other hand, we prove that there exist infinitely many integers m for which there is an infinite number of n’s such that A(m, n) is loose. Furthermore, we determine the smallest loose rectangle as well as the smallest loose square (A(181, 181)). It is still undecided whether there exist infinitely many loose squares.
Resumo:
Mathematics Subject Classification: 26A16, 26A33, 46E15.
Resumo:
2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30
Resumo:
MSC 2010: 26A33