4 resultados para Horizontal Connections
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Conventional methods in horizontal drilling processes incorporate magnetic surveying techniques for determining the position and orientation of the bottom-hole assembly (BHA). Such means result in an increased weight of the drilling assembly, higher cost due to the use of non-magnetic collars necessary for the shielding of the magnetometers, and significant errors in the position of the drilling bit. A fiber-optic gyroscope (FOG) based inertial navigation system (INS) has been proposed as an alternative to magnetometer -based downhole surveying. The utilizing of a tactical-grade FOG based surveying system in the harsh downhole environment has been shown to be theoretically feasible, yielding a significant BHA position error reduction (less than 100m over a 2-h experiment). To limit the growing errors of the INS, an in-drilling alignment (IDA) method for the INS has been proposed. This article aims at describing a simple, pneumatics-based design of the IDA apparatus and its implementation downhole. A mathematical model of the setup is developed and tested with Bloodshed Dev-C++. The simulations demonstrate a simple, low cost and feasible IDA apparatus.
Resumo:
Families of linear connections are constructed on almost con- tact manifolds with Norden metric. An analogous connection to the symmetric Yano connection is obtained on a normal almost contact manifold with Norden metric and closed structural 1-form. The curvature properties of this connec- tion are studied on two basic classes of normal almost contact manifolds with Norden metric.
Resumo:
This paper is a survey of results obtained by the authors on the geometry of connections with totally skew-symmetric torsion on the following manifolds: almost complex manifolds with Norden metric, almost contact manifolds with B-metric and almost hypercomplex manifolds with Hermitian and anti-Hermitian metric.
Resumo:
Ива Р. Докузова, Димитър Р. Разпопов - В настоящата статия е разгледан клас V оттримерни риманови многообразия M с метрика g и два афинорни тензора q и S. Дефинирана е и друга метрика ¯g в M. Локалните координати на всички тези тензори са циркулантни матрици. Намерени са: 1) зависимост между тензора на кривина R породен от g и тензора на кривина ¯R породен от ¯g; 2) тъждество за тензора на кривина R в случая, когато тензорът на кривина ¯R се анулира; 3) зависимост между секционната кривина на прозволна двумерна q-площадка {x, qx} и скаларната кривина на M.