8 resultados para GNSS, Ambiguity resolution, Regularization, Ill-posed problem, Success probability
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
It is well established that accent recognition can be as accurate as up to 95% when the signals are noise-free, using feature extraction techniques such as mel-frequency cepstral coefficients and binary classifiers such as discriminant analysis, support vector machine and k-nearest neighbors. In this paper, we demonstrate that the predictive performance can be reduced by as much as 15% when the signals are noisy. Specifically, in this paper we perturb the signals with different levels of white noise, and as the noise become stronger, the out-of-sample predictive performance deteriorates from 95% to 80%, although the in-sample prediction gives overly-optimistic results. ACM Computing Classification System (1998): C.3, C.5.1, H.1.2, H.2.4., G.3.
Resumo:
Недю Попиванов, Цветан Христов - Изследвани са някои тримерни аналози на задачата на Дарбу в равнината. През 1952 М. Протер формулира нови тримерни гранични задачи както за клас слабо хиперболични уравнения, така и за някои хиперболично-елиптични уравнения. За разлика от коректността на двумерната задача на Дарбу, новите задачи са некоректни. За слабо хиперболични уравнения, съдържащи младши членове, ние намираме достатъчни условия както за съществуване и единственост на обобщени решения с изолирана степенна особеност, така и за единственост на квази-регулярни решения на задачата на Протер.
Resumo:
Цветан Д. Христов, Недю Ив. Попиванов, Манфред Шнайдер - Изучени са някои тримерни гранични задачи за уравнения от смесен тип. За уравнения от типа на Трикоми те са формулирани от М. Протер през 1952, като тримерни аналози на задачите на Дарбу или Коши–Гурса в равнината. Добре известно е, че новите задачи са некоректни. Ние формулираме нова гранична задача за уравнения от типа на Келдиш и даваме понятие за квазиругулярно решение на тази задача и на eдна от задачите на Протер. Намерени са достатъчни условия за единственост на такива решения.
Resumo:
AMS subject classification: 90C30, 90C33.
Bottleneck Problem Solution using Biological Models of Attention in High Resolution Tracking Sensors
Resumo:
Every high resolution imaging system suffers from the bottleneck problem. This problem relates to the huge amount of data transmission from the sensor array to a digital signal processing (DSP) and to bottleneck in performance, caused by the requirement to process a large amount of information in parallel. The same problem exists in biological vision systems, where the information, sensed by many millions of receptors should be transmitted and processed in real time. Models, describing the bottleneck problem solutions in biological systems fall in the field of visual attention. This paper presents the bottleneck problem existing in imagers used for real time salient target tracking and proposes a simple solution by employing models of attention, found in biological systems. The bottleneck problem in imaging systems is presented, the existing models of visual attention are discussed and the architecture of the proposed imager is shown.
Resumo:
The parallel resolution procedures based on graph structures method are presented. OR-, AND- and DCDP- parallel inference on connection graph representation is explored and modifications to these algorithms using heuristic estimation are proposed. The principles for designing these heuristic functions are thoroughly discussed. The colored clause graphs resolution principle is presented. The comparison of efficiency (on the Steamroller problem) is carried out and the results are presented. The parallel unification algorithm used in the parallel inference procedure is briefly outlined in the final part of the paper.
Resumo:
AMS subject classification: 65K10, 49M07, 90C25, 90C48.
Resumo:
2000 Mathematics Subject Classification: 35L15, Secondary 35L30.