11 resultados para Finite Groups

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 20D60,20E15.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Let F C 0 be the class of all finite groups, and for each nonnegative integer n define by induction the group class FC^(n+1) consisting of all groups G such that for every element x the factor group G/CG ( ^G ) has the property FC^n . Thus FC^1 -groups are precisely groups with finite conjugacy classes, and the class FC^n obviously contains all finite groups and all nilpotent groups with class at most n. In this paper the known theory of FC-groups is taken as a model, and it is shown that many properties of FC-groups have an analogue in the class of FC^n -groups.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We characterize the groups which do not have non-trivial perfect sections and such that any strictly descending chain of non-“nilpotent-by-finite” subgroups is finite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work are described the algorithms that generate all near-rings on finite cyclic groups of order 16 to 29.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let a commutative ring R be a direct product of indecomposable rings with identity and let G be a finite abelian p-group. In the present paper we give a complete system of invariants of the group algebra RG of G over R when p is an invertible element in R. These investigations extend some classical results of Berman (1953 and 1958), Sehgal (1970) and Karpilovsky (1984) as well as a result of Mollov (1986).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* The authors thank the “Swiss National Science Foundation” for its support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 30C60

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Еленка Генчева, Цанко Генчев В настоящата работа се разглеждат крайни прости групи G , които могат да се представят като произведение на две свои собствени неабелеви прости подгрупи A и B. Всяко такова представяне G = AB е прието да се нарича факторизация на G, а тъй като множителите A и B са избрани да бъдат прости подгрупи на G, то разглежданите факторизации са известни още като прости факторизации на G. Тук се предполага, че G е проста група от лиев тип и лиев ранг 4 над крайно поле GF (q). Ключови думи: крайни прости групи, групи от лиев тип, факторизации на групи.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Валентин В. Илиев - Авторът изучава някои хомоморфни образи G на групата на Артин на плитките върху n нишки в крайни симетрични групи. Получените пермутационни групи G са разширения на симетричната група върху n букви чрез подходяща абелева група. Разширенията G зависят от един целочислен параметър q ≥ 1 и се разцепват тогава и само тогава, когато 4 не дели q. В случая на нечетно q са намерени всички крайномерни неприводими представяния на G, а те от своя страна генерират безкрайна редица от неприводими представяния на групата на плитките.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 14L99, 14R10, 20B27.