11 resultados para Finite Groups
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: 20D60,20E15.
Resumo:
Let F C 0 be the class of all finite groups, and for each nonnegative
integer n define by induction the group class FC^(n+1) consisting of
all groups G such that for every element x the factor group G/CG (
Resumo:
We characterize the groups which do not have non-trivial perfect sections and such that any strictly descending chain of non-“nilpotent-by-finite” subgroups is finite.
Resumo:
In the present work are described the algorithms that generate all near-rings on finite cyclic groups of order 16 to 29.
Resumo:
Let a commutative ring R be a direct product of indecomposable rings with identity and let G be a finite abelian p-group. In the present paper we give a complete system of invariants of the group algebra RG of G over R when p is an invertible element in R. These investigations extend some classical results of Berman (1953 and 1958), Sehgal (1970) and Karpilovsky (1984) as well as a result of Mollov (1986).
Resumo:
It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).
Resumo:
* The authors thank the “Swiss National Science Foundation” for its support.
Resumo:
MSC 2010: 30C60
Resumo:
Еленка Генчева, Цанко Генчев В настоящата работа се разглеждат крайни прости групи G , които могат да се представят като произведение на две свои собствени неабелеви прости подгрупи A и B. Всяко такова представяне G = AB е прието да се нарича факторизация на G, а тъй като множителите A и B са избрани да бъдат прости подгрупи на G, то разглежданите факторизации са известни още като прости факторизации на G. Тук се предполага, че G е проста група от лиев тип и лиев ранг 4 над крайно поле GF (q). Ключови думи: крайни прости групи, групи от лиев тип, факторизации на групи.
Resumo:
Валентин В. Илиев - Авторът изучава някои хомоморфни образи G на групата на Артин на плитките върху n нишки в крайни симетрични групи. Получените пермутационни групи G са разширения на симетричната група върху n букви чрез подходяща абелева група. Разширенията G зависят от един целочислен параметър q ≥ 1 и се разцепват тогава и само тогава, когато 4 не дели q. В случая на нечетно q са намерени всички крайномерни неприводими представяния на G, а те от своя страна генерират безкрайна редица от неприводими представяния на групата на плитките.
Resumo:
2010 Mathematics Subject Classification: 14L99, 14R10, 20B27.