5 resultados para FERMI ACCELERATION
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
One of the problems in AI tasks solving by neurocomputing methods is a considerable training time. This problem especially appears when it is needed to reach high quality in forecast reliability or pattern recognition. Some formalised ways for increasing of networks’ training speed without loosing of precision are proposed here. The offered approaches are based on the Sufficiency Principle, which is formal representation of the aim of a concrete task and conditions (limitations) of their solving [1]. This is development of the concept that includes the formal aims’ description to the context of such AI tasks as classification, pattern recognition, estimation etc.
Resumo:
In this paper we propose an optimized algorithm, which is faster compared to previously described finite difference acceleration scheme, namely the Modified Super-Time-Stepping (Modified STS) scheme for age-structured population models with difusion.
Resumo:
In this paper we propose an optimized algorithm, which is faster compared to previously described finite difference acceleration scheme, namely the Modified Super-Time-Stepping (Modified STS) scheme for age- structured population models with diffusion.
Resumo:
2000 Mathematics Subject Classification: 47H04, 65K10.
Resumo:
Дойчин Бояджиев, Галена Пеловска - В статията се предлага оптимизиран алгоритъм, който е по-бърз в сравнение с по- рано описаната ускорена (модифицирана STS) диференчна схема за възрастово структуриран популационен модел с дифузия. Запазвайки апроксимацията на модифицирания STS алгоритъм, изчислителното времето се намаля почти два пъти. Това прави оптимизирания метод по-предпочитан за задачи с нелинейност или с по-висока размерност.