37 resultados para Convex Arcs

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 52A10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakalo ff , Sofia, July, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we prove the nonexistence of arcs with parameters (232, 48) and (233, 48) in PG(4,5). This rules out the existence of linear codes with parameters [232,5,184] and [233,5,185] over the field with five elements and improves two instances in the recent tables by Maruta, Shinohara and Kikui of optimal codes of dimension 5 over F5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗ The work is partially supported by NSFR Grant No MM 409/94.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* This work was supported by the CNR while the author was visiting the University of Milan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a new construction of uniformly convex norms with a power type modulus on super-reflexive spaces based on the notion of dentability index. Furthermore, we prove that if the Szlenk index of a Banach space is less than or equal to ω (first infinite ordinal) then there is an equivalent weak* lower semicontinuous positively homogeneous functional on X* satisfying the uniform Kadec-Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK* renorming problems for Lp(X) spaces and C(K) spaces for K scattered compact space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition of the object contours in the image as sequences of digital straight segments and/or digital curve arcs is considered in this article. The definitions of digital straight segments and of digital curve arcs are proposed. The methods and programs to recognize the object contours are represented. The algorithm to recognize the digital straight segments is formulated in terms of the growing pyramidal networks taking into account the conceptual model of memory and identification (Rabinovich [4]).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problems of finding two optimal triangulations of a convex polygon: MaxMin area and MinMax area. These are the triangulations that maximize the area of the smallest area triangle in a triangulation, and respectively minimize the area of the largest area triangle in a triangulation, over all possible triangulations. The problem was originally solved by Klincsek by dynamic programming in cubic time [2]. Later, Keil and Vassilev devised an algorithm that runs in O(n^2 log n) time [1]. In this paper we describe new geometric findings on the structure of MaxMin and MinMax Area triangulations of convex polygons in two dimensions and their algorithmic implications. We improve the algorithm’s running time to quadratic for large classes of convex polygons. We also present experimental results on MaxMin area triangulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 90C25, 68W10, 49M37.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMS subject classification: 52A01, 13C99.