14 resultados para CONSTANT SCALAR CURVATURE
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: 53C42, 53C55.
Resumo:
Ива Р. Докузова, Димитър Р. Разпопов - В настоящата статия е разгледан клас V оттримерни риманови многообразия M с метрика g и два афинорни тензора q и S. Дефинирана е и друга метрика ¯g в M. Локалните координати на всички тези тензори са циркулантни матрици. Намерени са: 1) зависимост между тензора на кривина R породен от g и тензора на кривина ¯R породен от ¯g; 2) тъждество за тензора на кривина R в случая, когато тензорът на кривина ¯R се анулира; 3) зависимост между секционната кривина на прозволна двумерна q-площадка {x, qx} и скаларната кривина на M.
Resumo:
Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.
Resumo:
This work was partially supported by the Bulgarian National Science Fund under Grant I–618/96.
Resumo:
∗Research supported in part by NSF grant INT-9903302.
Resumo:
Mathematics Subject Classification: 26D10.
Resumo:
Certain curvature properties and scalar invariants of the mani- folds belonging to one of the main classes almost contact manifolds with Norden metric are considered. An example illustrating the obtained results is given and studied.
Resumo:
The C++ class library C-XSC for scientific computing has been extended with the possibility to compute scalar products with selectable accuracy in version 2.3.0. In previous versions, scalar products have always been computed exactly with the help of the so-called long accumulator. Additionally, optimized floating point computation of matrix and vector operations using BLAS-routines are added in C-XSC version 2.4.0. In this article the algorithms used and their implementations, as well as some potential pitfalls in the compilation, are described in more detail. Additionally, the theoretical background of the employed DotK algorithm and the necessary modifications of the concrete implementation in C-XSC are briefly explained. Run-time tests and numerical examples are presented as well.
Resumo:
2000 Mathematics Subject Classification: 11G15, 11G18, 14H52, 14J25, 32L07.
Resumo:
Марта Теофилова - Конструиран е пример на четиримерно специално комплексно многообразие с норденова метрика и постоянна холоморфна секционна кривина чрез двупара-метрично семейство от разрешими алгебри на Ли. Изследвани са кривинните свойства на полученото многообразие. Дадени са необходими и достатъчни усло-вия за разглежданото многообразие да бъде изотропно келерово.
Resumo:
2010 Mathematics Subject Classification: 37K40, 35Q15, 35Q51, 37K15.
Resumo:
ACM Computing Classification System (1998): G.1.1, G.1.2.
Resumo:
2000 Mathematics Subject Classification: Primary 53B35, Secondary 53C50.
Resumo:
We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic field, and obtain an asymptotic expansion of the resonances as the coupling constant ϰ of the perturbation tends to zero. Further, under the assumption that the Fermi Golden Rule holds true, we deduce estimates for the time evolution of the resonance states with and without analyticity assumptions; in the second case we obtain these results as a corollary of suitable Mourre estimates and a recent article of Cattaneo, Graf and Hunziker [11]. Next, we describe sets of perturbations V for which the Fermi Golden Rule is valid at each embedded eigenvalue of H; these sets turn out to be dense in various suitable topologies. Finally, we assume that V decays fast enough at infinity and is of definite sign, introduce the Krein spectral shift function for the operator pair (H+V, H), and study its singularities at the energies which coincide with eigenvalues of infinite multiplicity of the unperturbed operator H.