5 resultados para Big data, Spark, Hadoop
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The real purpose of collecting big data is to identify causality in the hope that this will facilitate credible predictivity . But the search for causality can trap one into infinite regress, and thus one takes refuge in seeking associations between variables in data sets. Regrettably, the mere knowledge of associations does not enable predictivity. Associations need to be embedded within the framework of probability calculus to make coherent predictions. This is so because associations are a feature of probability models, and hence they do not exist outside the framework of a model. Measures of association, like correlation, regression, and mutual information merely refute a preconceived model. Estimated measures of associations do not lead to a probability model; a model is the product of pure thought. This paper discusses these and other fundamentals that are germane to seeking associations in particular, and machine learning in general. ACM Computing Classification System (1998): H.1.2, H.2.4., G.3.
Resumo:
Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
Open Research Data - A step by step guide through the research data lifecycle, data set creation, big data vs long-tail, metadata, data centres/data repositories, open access for data, data sharing, data citation and publication.
Resumo:
This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space (p) is much larger than the number of observations (n). Specifically, we evaluate massive gene expression microarray cancer data where the ratio κ is less than one. We explore the statistical and computational challenges inherent in these high dimensional low sample size (HDLSS) problems and present statistical machine learning methods used to tackle and circumvent these difficulties. Regularization and kernel algorithms were explored in this research using seven datasets where κ < 1. These techniques require special attention to tuning necessitating several extensions of cross-validation to be investigated to support better predictive performance. While no single algorithm was universally the best predictor, the regularization technique produced lower test errors in five of the seven datasets studied.