9 resultados para Automotive supplies - Design - Simulation methods
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: primary: 60J80, 60J85, secondary: 62M09, 92D40
Resumo:
In the article it is considered preconditions and main principles of creation of virtual laboratories for computer-aided design, as tools for interdisciplinary researches. Virtual laboratory, what are offered, is worth to be used on the stage of the requirements specification or EFT-stage, because it gives the possibility of fast estimating of the project realization, certain characteristics and, as a result, expected benefit of its applications. Using of these technologies already increase automation level of design stages of new devices for different purposes. Proposed computer technology gives possibility to specialists from such scientific fields, as chemistry, biology, biochemistry, physics etc, to check possibility of device creating on the basis of developed sensors. It lets to reduce terms and costs of designing of computer devices and systems on the early stages of designing, for example on the stage of requirements specification or EFT-stage. An important feature of this project is using the advanced multi-dimensional access method for organizing the information base of the Virtual laboratory.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
A verification task of proving the equivalence of two descriptions of the same device is examined for the case, when one of the descriptions is partially defined. In this case, the verification task is reduced to checking out whether logical descriptions are equivalent on the domain of the incompletely defined one. Simulation-based approach to solving this task for different vector forms of description representations is proposed. Fast Boolean computations over Boolean and ternary vectors having big sizes underlie the offered methods.
Resumo:
Conventional methods in horizontal drilling processes incorporate magnetic surveying techniques for determining the position and orientation of the bottom-hole assembly (BHA). Such means result in an increased weight of the drilling assembly, higher cost due to the use of non-magnetic collars necessary for the shielding of the magnetometers, and significant errors in the position of the drilling bit. A fiber-optic gyroscope (FOG) based inertial navigation system (INS) has been proposed as an alternative to magnetometer -based downhole surveying. The utilizing of a tactical-grade FOG based surveying system in the harsh downhole environment has been shown to be theoretically feasible, yielding a significant BHA position error reduction (less than 100m over a 2-h experiment). To limit the growing errors of the INS, an in-drilling alignment (IDA) method for the INS has been proposed. This article aims at describing a simple, pneumatics-based design of the IDA apparatus and its implementation downhole. A mathematical model of the setup is developed and tested with Bloodshed Dev-C++. The simulations demonstrate a simple, low cost and feasible IDA apparatus.
Resumo:
The questions of software-based design of “virtual” technical systems are considered as facility of imitation experiment for educational purposes. These virtual systems are usable for analysis of medical intrascopy systems functioning. The virtual educational technical systems allow guarantee the goodness technical training of bioengineers.
Resumo:
In this paper the main problems for computer design of materials, which would have predefined properties, with the use of artificial intelligence methods are presented. The DB on inorganic compound properties and the system of DBs on materials for electronics with completely assessed information: phase diagram DB of material systems with semiconducting phases and DB on acousto-optical, electro-optical, and nonlinear optical properties are considered. These DBs are a source of information for data analysis. Using the DBs and artificial intelligence methods we have predicted thousands of new compounds in ternary, quaternary and more complicated chemical systems and estimated some of their properties (crystal structure type, melting point, homogeneity region etc.). The comparison of our predictions with experimental data, obtained later, showed that the average reliability of predicted inorganic compounds exceeds 80%. The perspectives of computational material design with the use of artificial intelligence methods are considered.
Resumo:
Certain theoretical and methodological problems of designing real-time dynamical expert systems, which belong to the class of the most complex integrated expert systems, are discussed. Primary attention is given to the problems of designing subsystems for modeling the external environment in the case where the environment is represented by complex engineering systems. A specific approach to designing simulation models for complex engineering systems is proposed and examples of the application of this approach based on the G2 (Gensym Corp.) tool system are described.
Resumo:
2000 Mathematics Subject Classification: 78A50