3 resultados para Architecture Description Languages

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A concept of educational game for learning programming languages is presented. The idea of learning programming languages and improving programming skills through programming game characters’ behavior is described. The learning course description rules for using in games are suggested. The concept is implemented in a game for learning C# programming language. A common game architecture is modified for using in the educational game. The game engine is built on the base of the graphical engine Ogre3D and extended with game logic. The game has been developed as an industry level commercial product and is planned for sale to educational institutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshko ff and Lubomir Tschakaloff , Sofi a, July, 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INFRAWEBS project [INFRAWEBS] considers usage of semantics for the complete lifecycle of Semantic Web processes, which represent complex interactions between Semantic Web Services. One of the main initiatives in the Semantic Web is WSMO framework, aiming at describing the various aspects related to Semantic Web Services in order to enable the automation of Web Service discovery, composition, interoperation and invocation. In the paper the conceptual architecture for BPEL-based INFRAWEBS editor is proposed that is intended to construct a part of WSMO descriptions of the Semantic Web Services. The semantic description of Web Services has to cover Data, Functional, Execution and QoS semantics. The representation of Functional semantics can be achieved by adding the service functionality to the process description. The architecture relies on a functional (operational) semantics of the Business Process Execution Language for Web Services (BPEL4WS) and uses abstract state machine (ASM) paradigm. This allows describing the dynamic properties of the process descriptions in terms of partially ordered transition rules and transforming them to WSMO framework.