6 resultados para Algebraic plane curves
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
* The author was supported by NSF Grant No. DMS 9706883.
Resumo:
Let C = (C, g^1/4 ) be a tetragonal curve. We consider the scrollar invariants e1 , e2 , e3 of g^1/4 . We prove that if W^1/4 (C) is a non-singular variety, then every g^1/4 ∈ W^1/4 (C) has the same scrollar invariants.
Resumo:
We define Picard cycles on each smooth three-sheeted Galois cover C of the Riemann sphere. The moduli space of all these algebraic curves is a nice Shimura surface, namely a symmetric quotient of the projective plane uniformized by the complex two-dimensional unit ball. We show that all Picard cycles on C form a simple orbit of the Picard modular group of Eisenstein numbers. The proof uses a special surface classification in connection with the uniformization of a classical Picard-Fuchs system. It yields an explicit symplectic representation of the braid groups (coloured or not) of four strings.
Resumo:
2000 Mathematics Subject Classification: 14H45, 14H50, 14J26.
Resumo:
2000 Mathematics Subject Classification: 14H50.
Resumo:
2000 Mathematics Subject Classification: 52A10.