41 resultados para Supervised pattern recognition methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose the adaptive algorithm for solving a set of similar scheduling problems using learning technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in performance measure) and efficient (in computational time) heuristics by adapting local decisions for the scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern recognition apparatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article the new approach for optimization of estimations calculating algorithms is suggested. It can be used for finding the correct algorithm of minimal complexity in the context of algebraic approach for pattern recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach of automatic ECG analysis based on scale-scale signal representation is proposed. The approach uses curvature scale-space representation to locate main ECG waveform limits and peaks and may be used to correct results of other ECG analysis techniques or independently. Moreover dynamic matching of ECG CSS representations provides robust preliminary recognition of ECG abnormalities which has been proven by experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given in the report conceptual presentation of the main principles of fractal-complexity Ration of the media and thinking processes of the human was formulated on the bases of the cybernetic interpretation of scientific information (basically from neurophysiology and neuropsychology, containing the interpretation giving the best fit to the authors point of view) and plausible hypothesis's, filling the lack of knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* Работа выполнена при поддержке РФФИ, гранты 07-01-00331-a и 08-01-00944-a

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of logic and probabilistic models constructing for multivariate heterogeneous time series is offered. There are some important properties of these models, e.g. universality. In this paper also discussed the logic and probabilistic models distinctive features in comparison with hidden Markov processes. The early proposed time series forecasting algorithm is tested on applied task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Рассматривается задача структуризации избыточного набора информации, выявления основных закономерностей, содержащихся в нем с помощью аппарата FRiS-функций. В результате решения этой задачи (задачи SDX) на основе исходного множества объектов строится его сокращенное описание в терминах классов и существенных признаков. Данное описание снабжено системой правил, позволяющих восстанавливать значения всех признаков на основе существенных и находить место новым объектам в системе построенных классов.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Разработан и реализован алгоритм выявления фракталоподобных структур в ДНК- последовательностях. Фрактальность трактуется как самоподобие, основанное на свойстве симметрии или комплементарной симметрии. Локальные фракталы интересны своей способностью аккумулировать множественные палиндромно-шпилечные структуры с потенциально возможными регуляторными функциями. Выявлены реальные случаи проявления фрактальности в различных геномах: от вирусов до человека. Рассмотрена возможность использования фракталоподобных структур в качестве маркеров, различающих близкие классы последовательностей.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present one approach for extending the learning set of a classification algorithm with additional metadata. It is used as a base for giving appropriate names to found regularities. The analysis of correspondence between connections established in the attribute space and existing links between concepts can be used as a test for creation of an adequate model of the observed world. Meta-PGN classifier is suggested as a possible tool for establishing these connections. Applying this approach in the field of content-based image retrieval of art paintings provides a tool for extracting specific feature combinations, which represent different sides of artists' styles, periods and movements.