40 resultados para PATTERN-RECOGNITION RECEPTOR
Resumo:
Given in the report conceptual presentation of the main principles of fractal-complexity Ration of the media and thinking processes of the human was formulated on the bases of the cybernetic interpretation of scientific information (basically from neurophysiology and neuropsychology, containing the interpretation giving the best fit to the authors point of view) and plausible hypothesis's, filling the lack of knowledge.
Resumo:
* Работа выполнена при поддержке РФФИ, гранты 07-01-00331-a и 08-01-00944-a
Resumo:
The method of logic and probabilistic models constructing for multivariate heterogeneous time series is offered. There are some important properties of these models, e.g. universality. In this paper also discussed the logic and probabilistic models distinctive features in comparison with hidden Markov processes. The early proposed time series forecasting algorithm is tested on applied task.
Resumo:
Рассматривается задача структуризации избыточного набора информации, выявления основных закономерностей, содержащихся в нем с помощью аппарата FRiS-функций. В результате решения этой задачи (задачи SDX) на основе исходного множества объектов строится его сокращенное описание в терминах классов и существенных признаков. Данное описание снабжено системой правил, позволяющих восстанавливать значения всех признаков на основе существенных и находить место новым объектам в системе построенных классов.
Resumo:
Разработан и реализован алгоритм выявления фракталоподобных структур в ДНК- последовательностях. Фрактальность трактуется как самоподобие, основанное на свойстве симметрии или комплементарной симметрии. Локальные фракталы интересны своей способностью аккумулировать множественные палиндромно-шпилечные структуры с потенциально возможными регуляторными функциями. Выявлены реальные случаи проявления фрактальности в различных геномах: от вирусов до человека. Рассмотрена возможность использования фракталоподобных структур в качестве маркеров, различающих близкие классы последовательностей.
Resumo:
The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.
Resumo:
ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.
Resumo:
In this paper, we present one approach for extending the learning set of a classification algorithm with additional metadata. It is used as a base for giving appropriate names to found regularities. The analysis of correspondence between connections established in the attribute space and existing links between concepts can be used as a test for creation of an adequate model of the observed world. Meta-PGN classifier is suggested as a possible tool for establishing these connections. Applying this approach in the field of content-based image retrieval of art paintings provides a tool for extracting specific feature combinations, which represent different sides of artists' styles, periods and movements.
Resumo:
Carte du Ciel (from French, map of the sky) is a part of a 19th century extensive international astronomical project whose goal was to map the entire visible sky. The results of this vast effort were collected in the form of astrographic plates and their paper representatives that are called astrographic maps and are widely distributed among many observatories and astronomical institutes over the world. Our goal is to design methods and algorithms to automatically extract data from digitized Carte du Ciel astrographic maps. This paper examines the image processing and pattern recognition techniques that can be adopted for automatic extraction of astronomical data from stars’ triple expositions that can aid variable stars detection in Carte du Ciel maps.
Resumo:
This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space (p) is much larger than the number of observations (n). Specifically, we evaluate massive gene expression microarray cancer data where the ratio κ is less than one. We explore the statistical and computational challenges inherent in these high dimensional low sample size (HDLSS) problems and present statistical machine learning methods used to tackle and circumvent these difficulties. Regularization and kernel algorithms were explored in this research using seven datasets where κ < 1. These techniques require special attention to tuning necessitating several extensions of cross-validation to be investigated to support better predictive performance. While no single algorithm was universally the best predictor, the regularization technique produced lower test errors in five of the seven datasets studied.