45 resultados para Multitype branching processes
Resumo:
2000 Mathematics Subject Classification: Primary 60J80, Secondary 60G99.
Resumo:
Косто В. Митов - Разклоняващите се стохастични процеси са модели на популационната динамика на обекти, които имат случайно време на живот и произвеждат потомци в съответствие с дадени вероятностни закони. Типични примери са ядрените реакции, клетъчната пролиферация, биологичното размножаване, някои химични реакции, икономически и финансови явления. В този обзор сме се опитали да представим съвсем накратко някои от най-важните моменти и факти от историята, теорията и приложенията на разклоняващите се процеси.
Resumo:
This work is supported by Bulgarian NFSI, grant No. MM–704/97
Resumo:
AMS subject classification: 60J80, 60J15.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classification: primary: 60J80, 60J85, secondary: 62M09, 92D40
Resumo:
2000 Mathematics Subject Classification: 60J80, 62M05
Resumo:
2000 Mathematics Subject Classification: 60J80, 60F05
Resumo:
2010 Mathematics Subject Classification: 62F12, 62M05, 62M09, 62M10, 60G42.
Resumo:
2000 Mathematics Subject Classification: 60J80, 60J20, 60J10, 60G10, 60G70, 60F99.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
The maximum M of a critical Bienaymé-Galton-Watson process conditioned on the total progeny N is studied. Imbedding of the process in a random walk is used. A limit theorem for the distribution of M as N → ∞ is proved. The result is trasferred to the non-critical processes. A corollary for the maximal strata of a random rooted labeled tree is obtained.
Resumo:
2000 Mathematics Subject Classification: 60K15, 60K20, 60G20,60J75, 60J80, 60J85, 60-08, 90B15.