25 resultados para Variational methods for second-order elliptic equations
Resumo:
2000 Mathematics Subject Classification: 62G32, 62G20.
Resumo:
Nonmonotonic Logics such as Autoepistemic Logic, Reflective Logic, and Default Logic, are usually defined in terms of set-theoretic fixed-point equations defined over deductively closed sets of sentences of First Order Logic. Such systems may also be represented as necessary equivalences in a Modal Logic stronger than S5 with the added advantage that such representations may be generalized to allow quantified variables crossing modal scopes resulting in a Quantified Autoepistemic Logic, a Quantified Autoepistemic Kernel, a Quantified Reflective Logic, and a Quantified Default Logic. Quantifiers in all these generalizations obey all the normal laws of logic including both the Barcan formula and its converse. Herein, we address the problem of solving some necessary equivalences containing universal quantifiers over modal scopes. Solutions obtained by these methods are then compared to related results obtained in the literature by Circumscription in Second Order Logic since the disjunction of all the solutions of a necessary equivalence containing just normal defaults in these Quantified Logics, is equivalent to that system.
Resumo:
We prove some multiplicity results concerning quasilinear elliptic equations with natural growth conditions. Techniques of nonsmooth critical point theory are employed.
Resumo:
Недю Попиванов, Цветан Христов - Изследвани са някои тримерни аналози на задачата на Дарбу в равнината. През 1952 М. Протер формулира нови тримерни гранични задачи както за клас слабо хиперболични уравнения, така и за някои хиперболично-елиптични уравнения. За разлика от коректността на двумерната задача на Дарбу, новите задачи са некоректни. За слабо хиперболични уравнения, съдържащи младши членове, ние намираме достатъчни условия както за съществуване и единственост на обобщени решения с изолирана степенна особеност, така и за единственост на квази-регулярни решения на задачата на Протер.
Resumo:
2010 Mathematics Subject Classification: 35B65, 35S05, 35A20.
Resumo:
2010 Mathematics Subject Classification: 35J65, 35K60, 35B05, 35R05.
Resumo:
2000 Mathematics Subject Classification: 35B50, 35L15.
Resumo:
Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90
Resumo:
AMS subject classification: Primary 34A60, Secondary 49K24.
Resumo:
2000 Mathematics Subject Classification: Primary 60J45, 60J50, 35Cxx; Secondary 31Cxx.