38 resultados para Riemann–Liouville fractional integral
Resumo:
2000 Mathematics Subject Classification: Primary 30C45, Secondary 26A33, 30C80
Resumo:
2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30
Resumo:
Mathematics Subject Classification: 33D60, 33D90, 26A33
Resumo:
Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.
Resumo:
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.
Resumo:
The fractional Fourier transform (FrFT) is used for the solution of the diffraction integral in optics. A scanning approach is proposed for finding the optimal FrFT order. In this way, the process of diffraction computing is speeded up. The basic algorithm and the intermediate results at each stage are demonstrated.
On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes
Resumo:
Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.
Resumo:
2000 Mathematics Subject Classification: Primary 42B20; Secondary 42B15, 42B25
Resumo:
Mathematics Subject Classification: 44A40, 45B05
Resumo:
2000 Mathematics Subject Classification: Primary 26A33; Secondary 35S10, 86A05
Resumo:
This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed in terms of a convolution of two special functions of Wright’s type.
Resumo:
Mathematics Subject Classification: 33C05, 33C10, 33C20, 33C60, 33E12, 33E20, 40A30
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10
Resumo:
Mathematics Subject Classification: Primary 30C40