31 resultados para Numerical solutions of ODE’s
Resumo:
A modification of the Nekrassov method for finding a solution of a linear system of algebraic equations is given and a numerical example is shown.
Resumo:
2000 Mathematics Subject Classification: 35B35, 35B40, 35Q35, 76B25, 76E30.
Resumo:
2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.
Resumo:
Добри Данков, Владимир Русинов, Мария Велинова, Жасмина Петрова - Изследвана е химическа реакция чрез два начина за моделиране на вероятността за химическа реакция използвайки Direct Simulation Monte Carlo метод. Изследван е порядъка на разликите при температурите и концентрациите чрез тези начини. Когато активността на химическата реакция намалява, намаляват и разликите между концентрациите и температурите получени по двата начина. Ключови думи: Механика на флуидите, Кинетична теория, Разреден газ, DSMC
Resumo:
Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.
Resumo:
Недю Иванов Попиванов, Алексей Йорданов Николов - През 1952 г. М. Протър формулира нови гранични задачи за вълновото уравнение, които са тримерни аналози на задачите на Дарбу в равнината. Задачите са разгледани в тримерна област, ограничена от две характеристични конуса и равнина. Сега, след като са минали повече от 50 години, е добре известно, че за безброй гладки функции в дясната страна на уравнението тези задачи нямат класически решения, а обобщеното решение има силна степенна особеност във върха на характеристичния конус, която е изолирана и не се разпространява по конуса. Тук ние разглеждаме трета гранична задача за вълновото уравнение с младши членове и дясна страна във формата на тригонометричен полином. Дадена е по-нова от досега известната априорна оценка за максимално възможната особеност на решенията на тази задача. Оказва се, че при по-общото уравнение с младши членове възможната сингулярност е от същия ред като при чисто вълновото уравнение.
Resumo:
2010 Mathematics Subject Classification: 35B65, 35S05, 35A20.
Resumo:
2010 Mathematics Subject Classification: 35Q55.
Resumo:
2010 Mathematics Subject Classification: 74J30, 34L30.
Resumo:
2010 Mathematics Subject Classification: 35R60, 60H15, 74H35.
Resumo:
2000 Mathematics Subject Classification: 35L15, 35B40, 47F05.
Resumo:
MSC 2010: 35R11, 42A38, 26A33, 33E12
Resumo:
MSC 2010: 44A35, 44A40
Resumo:
2000 Mathematics Subject Classification: 65M06, 65M12.
Resumo:
2000 Mathematics Subject Classification: 35K55, 35K60.