35 resultados para Binomial theorem.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Павел Т. Стойнов - В тази работа се разглежда отрицателно биномното разпределение, известно още като разпределение на Пойа. Предполагаме, че смесващото разпределение е претеглено гама разпределение. Изведени са вероятностите в някои частни случаи. Дадени са рекурентните формули на Панжер.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMS subject classification: 65J15, 47H04, 90C30.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMS subject classification: 60J80, 62F12, 62P10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only a few characterizations have been obtained in literatute for the negative binomial distribution (see Johnson et al., Chap. 5, 1992). In this article a characterization of the negative binomial distribution related to random sums is obtained which is motivated by the geometric distribution characterization given by Khalil et al. (1991). An interpretation in terms of an unreliable system is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62F15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1952 Y. Tagamlitzki gave an elegant proof of the classical Bochner’s theorem on the positively definite functions. Unfortunately, he never published his proof. In this paper we consider a related but simpler problem, the trigonometric moment problem, by using Tagamlitzki’s approach.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1900 E. B. Van Vleck proposed a very efficient method to compute the Sturm sequence of a polynomial p (x) ∈ Z[x] by triangularizing one of Sylvester’s matrices of p (x) and its derivative p′(x). That method works fine only for the case of complete sequences provided no pivots take place. In 1917, A. J. Pell and R. L. Gordon pointed out this “weakness” in Van Vleck’s theorem, rectified it but did not extend his method, so that it also works in the cases of: (a) complete Sturm sequences with pivot, and (b) incomplete Sturm sequences. Despite its importance, the Pell-Gordon Theorem for polynomials in Q[x] has been totally forgotten and, to our knowledge, it is referenced by us for the first time in the literature. In this paper we go over Van Vleck’s theorem and method, modify slightly the formula of the Pell-Gordon Theorem and present a general triangularization method, called the VanVleck-Pell-Gordon method, that correctly computes in Z[x] polynomial Sturm sequences, both complete and incomplete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 15A15, 15A24, 15A33, 16S50.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A25, 41A36.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30C10.