21 resultados para ADAPTIVE NEURAL NETWORKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the problems in AI tasks solving by neurocomputing methods is a considerable training time. This problem especially appears when it is needed to reach high quality in forecast reliability or pattern recognition. Some formalised ways for increasing of networks’ training speed without loosing of precision are proposed here. The offered approaches are based on the Sufficiency Principle, which is formal representation of the aim of a concrete task and conditions (limitations) of their solving [1]. This is development of the concept that includes the formal aims’ description to the context of such AI tasks as classification, pattern recognition, estimation etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we showed various approachs implemented in Artificial Neural Networks for network resources management and Internet congestion control. Through a training process, Neural Networks can determine nonlinear relationships in a data set by associating the corresponding outputs to input patterns. Therefore, the application of these networks to Traffic Engineering can help achieve its general objective: “intelligent” agents or systems capable of adapting dataflow according to available resources. In this article, we analyze the opportunity and feasibility to apply Artificial Neural Networks to a number of tasks related to Traffic Engineering. In previous sections, we present the basics of each one of these disciplines, which are associated to Artificial Intelligence and Computer Networks respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are a great deal of approaches in artificial intelligence, some of them also coming from biology and neirophysiology. In this paper we are making a review, discussing many of them, and arranging our discussion around the autonomous agent research. We highlight three aspect in our classification: type of abstraction applied for representing agent knowledge, the implementation of hypothesis processing mechanism, allowed degree of freedom in behaviour and self-organizing. Using this classification many approaches in artificial intelligence are evaluated. Then we summarize all discussed ideas and propose a series of general principles for building an autonomous adaptive agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of multi-agent routing in static telecommunication networks with fixed configuration is considered. The problem is formulated in two ways: for centralized routing schema with the coordinator-agent (global routing) and for distributed routing schema with independent agents (local routing). For both schemas appropriate Hopfield neural networks (HNN) are constructed.