22 resultados para 170205 Neurocognitive Patterns and Neural Networks
Resumo:
Neural Networks have been successfully employed in different biomedical settings. They have been useful for feature extractions from images and biomedical data in a variety of diagnostic applications. In this paper, they are applied as a diagnostic tool for classifying different levels of gastric electrical uncoupling in controlled acute experiments on dogs. Data was collected from 16 dogs using six bipolar electrodes inserted into the serosa of the antral wall. Each dog underwent three recordings under different conditions: (1) basal state, (2) mild surgically-induced uncoupling, and (3) severe surgically-induced uncoupling. For each condition half-hour recordings were made. The neural network was implemented according to the Learning Vector Quantization model. This is a supervised learning model of the Kohonen Self-Organizing Maps. Majority of the recordings collected from the dogs were used for network training. Remaining recordings served as a testing tool to examine the validity of the training procedure. Approximately 90% of the dogs from the neural network training set were classified properly. However, only 31% of the dogs not included in the training process were accurately diagnosed. The poor neural-network based diagnosis of recordings that did not participate in the training process might have been caused by inappropriate representation of input data. Previous research has suggested characterizing signals according to certain features of the recorded data. This method, if employed, would reduce the noise and possibly improve the diagnostic abilities of the neural network.
Resumo:
* Supported by INTAS 2000-626, INTAS YSF 03-55-1969, INTAS INNO 182, and TIC 2003-09319-c03-03.
Resumo:
One of the problems in AI tasks solving by neurocomputing methods is a considerable training time. This problem especially appears when it is needed to reach high quality in forecast reliability or pattern recognition. Some formalised ways for increasing of networks’ training speed without loosing of precision are proposed here. The offered approaches are based on the Sufficiency Principle, which is formal representation of the aim of a concrete task and conditions (limitations) of their solving [1]. This is development of the concept that includes the formal aims’ description to the context of such AI tasks as classification, pattern recognition, estimation etc.
Resumo:
A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.
Resumo:
The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.
Resumo:
Given cybernetic idea is formed on the basis of neurophysiologic, neuropsychological, neurocybernetic data and verisimilar hypotheses, which fill gaps of formers, of the author as well. First of all attention is focused on general principles of a Memory organization in the brain and processes which take part in it that realize such psychical functions as perception and identification of input information about patterns and a problem solving, which is specified by the input and output conditions, as well. Realization of the second function, essentially cogitative, is discussed in the aspects of figurative and lingual thinking on the levels of intuition and understanding. The reasons of advisability and principles of bionic approach to creation of appropriate tools of artificial intelligent are proposed.
Resumo:
The problems and methods for adaptive control and multi-agent processing of information in global telecommunication and computer networks (TCN) are discussed. Criteria for controllability and communication ability (routing ability) of dataflows are described. Multi-agent model for exchange of divided information resources in global TCN has been suggested. Peculiarities for adaptive and intelligent control of dataflows in uncertain conditions and network collisions are analyzed.